段数を削減した PRESENT を用いた倍ブロック長圧縮関数に対する 衝突攻撃

小林 哲也^{†*} 廣瀬 勝一[†]

Collision Attack on Double-Block-Length Compression Function Using Round-Reduced PRESENT

Tetsuya KOBAYASHI†* and Shoichi HIROSE†

あらまし 我々は,軽量ブロック暗号 PRESENT を用いて構成した倍ブロック長圧縮関数に対する衝突攻撃 の検討を行った.本論文では,段数を10段に削減した PRESENT を用いた倍ブロック長圧縮関数に対して,計 算量 2⁶⁰ で衝突攻撃が行えることを示す.また段数を8段に削減した PRESENT を用いた倍ブロック長圧縮関 数に対する衝突攻撃の計算機実験の結果を示す.更に計算量の理論値と実験値の比較を行う. キーワード ハッシュ関数,倍ブロック長圧縮関数,衝突攻撃,PRESENT

() 「)) > 3 因数, 山) =)) 民圧縮因数, 国人攻革, 11003

1. まえがき

(a) 背 景

ハッシュ関数は任意長の系列を固定長の系列に変換 する関数であり,情報セキュリティにおいて重要な基 本的要素として,改ざんの検知,メッセージ認証,擬 似乱数生成などに用いられている.ハッシュ関数に要 求される主な性質として,衝突計算困難性,原像計算 困難性,第二原像計算困難性の三つが挙げられる.こ れらはハッシュ関数の出力長を n としたとき,衝突, 原像,第二原像を見つけるためにそれぞれ $2^{n/2}$, 2^n , 2^n の計算量が必要であることを要求する.衝突攻撃 は,ハッシュ関数を h としたとき, $h(m) = h(\tilde{m})$ を 満たすような相異なる m, \tilde{m} を見つける攻撃である.

現在広く利用されているハッシュ関数は, 圧縮関数 を用いて構成される. 圧縮関数は, 固定長のメッセー ジブロックと連鎖値を入力とし, 固定長の値を出力す る.入力メッセージはパディング処理され, 固定長の メッセージブロックに分割される. 圧縮関数をメッセー ジブロックごとに繰り返し適用することでハッシュ値 の計算を行う. 圧縮関数はブロック暗号を用いて構成することがで きる. PRESENT [4] は Bogdanov らによって提案さ れた軽量の共通鍵ブロック暗号であり, RFID タグや センサネットワークなどのメモリや計算能力に制約が あるような環境での利用を想定して設計されている. PRESENT は SPN 構造を有する 64 ビットのブロッ ク暗号であり, 80 ビットまたは 128 ビット鍵が利用で きる.

Bogdanovらは、ブロック暗号 PRESENT を用いた 軽量ハッシュ関数の構成法を検討している [5]. Davies-Meyer 方式を用いると、ハッシュ値の長さがブロック 暗号のブロック長と等しい圧縮関数を構成できる. こ の方式で PRESENT を用いてハッシュ関数を構成す ると、ハッシュ値の長さは 64 ビットとなり、衝突計算 困難性を要求するアプリケーションに対しては十分な 安全性を提供できない. 一方、[7] に示された構成法を 用いるとブロック長圧縮関数を構成できる. PRESENT を用いた場合のハッシュ値の長さは 128 ビットとなる.

(b) 成 果

本論文では PRESENT を用いた倍ブロック長圧縮 関数に対する衝突攻撃について述べる. 段数を 10 段 に削減した PRESENT を用いた倍ブロック長圧縮関 数に対して,計算量 2⁶⁰ で衝突攻撃が行えることを示 す.本攻撃では攻撃者は連鎖値(または初期値)の値

Ţ.

[†]福井大学大学院工学研究科,福井市

Graduate School of Engineering, University of Fukui, Fukuishi, 910–8507 Japan

^{*} 現在,アイシン・エィ・ダブリュ株式会社

を自由に決めることができない.また,段数を8段に 削減した PRESENT を用いた倍ブロック長圧縮関数 に対する衝突攻撃の計算機実験の結果を示し,計算量 の理論値と実験値の比較を行う.

筆者らの知る限りにおいて、これまでのところ、 PRESENT を用いた倍ブロック長圧縮関数に対する 衝突攻撃に関する報告はなされていない.

(c) 関連研究

ブロック暗号 PRESENT に対する攻撃の既存研究 には次のものがある. Wang は 16 段の PRESENT に 対し 2^{64} の選択平文と 2^{65} のメモリアクセスで差分解 読が行えることを示した [10]. Albrecht らは, 19 段の PRESENT に対し 2^{113} の計算量で差分攻撃が行える ことを示した [1]. 大熊は 24 段の PRESENT に対し $2^{63.5}$ の既知平文で線形攻撃が行えることを示した [9]. Cho は 26 段の PRESENT に対し 2^{64} の既知平文と 2^{72} の計算量で線形攻撃が行えることを示した [6].

Biryukov らは、ブロック暗号 Camellia [2] の変形 版である byte-Camellia を用いた倍ブロック長圧縮関 数に対し、ランダム関数との識別攻撃が行える差分 特性が存在することを示した [3]. Wei らは、ブロッ ク暗号 IDEA [8] を用いた種々の単ブロック長、倍ブ ロック長圧縮関数の脆弱性を指摘した [11]. 小山らは、 PRESENT を用いた Davies-Meyer 方式による圧縮 関数について、12 段の PRESENT を用いた場合に対 して衝突攻撃と第二原像攻撃が可能であること、20 段 の PRESENT を用いた場合に対して識別攻撃が可能 であることを示した [12].

(d) 本論文の構成

本論文の構成は次のとおりである.2.では,ブロック暗号 PRESENT と倍ブロック長圧縮関数について 述べる.3.では,10 段の PRESENT を用いた倍ブ ロック長圧縮関数への衝突攻撃を示す.4.では,8 段 の PRESENT に対する計算機実験の結果を示し,計 算量の理論値と実験値の比較を行う.5.ではまとめを 述べる.

2. 準備

2.1 PRESENT の仕様

以下では ⊕ はビットごとの排他的論理和を表し, || はビット列の連接を表す. また, ≪ ℓ は ℓ ビットの左 巡回シフトを表す.

PRESENT のブロック長は 64 ビットであり, 鍵長 は 80 ビットまたは 128 ビットである.本論文では 80

表 1 PRESENT の S-box Table 1 S-box of PRESENT.

x	0	1	2	3	4	5	6	7	8	9	а	b	с	d	е	f
S(x)	с	5	6	b	9	0	а	d	3	е	f	8	4	7	1	2

ビット鍵の PRESENT を対象とする. PRESENT は SPN (Substitution Permutation Network) 構造を有 し,各段で3種類の変換 (addRoundKey, sBoxlayer, pLayer) を行う.図1 にラウンド変換を示す.暗号化 ではこの変換を31 回繰り返した後に, post-whitening の addRoundKey 変換が行われる.

PRESENT の r 段目 (r = 1,2,...) のラウンド鍵 を k^r と表記し, k^r の下位から j 番目のビットを $k^r[j]$ と表記する. ここで, $j \in \{0,1,...,63\}$ であ り, $k^r[0]$ が最下位ビットである. $k^r[j]$ から $k^r[l]$ ま で (j < l) のビット列を $k^r[j..l]$ と表記する. また k^r を 4 ビットごとに区切り, $k^r = k_{15}^r ||k_{14}^r|| \cdots ||k_0^r$ とす る. $k_i^r[j]$ ($j \in \{0,1,2,3\}$) は k_i^r の下位から j 番目の ビットを表す. 同様に, sBoxlayer 変換の直前の状態 (addRoundKey 変換後の状態) を x^r , sBoxlayer 変 換後の状態を y^r , pLayer 変換後の状態を z^r と表記 する. ただし z^0 を平文とする. x_i^r を r 段目の右から i 番目の S-box の入力とする. また鍵レジスタの状態 を κ^r と表記する.

(1) addRoundKey 変換では、ラウンド鍵 k^r の 排他的論理和が行われる.

 $x^r = z^{r-1} \oplus k^r \quad .$

(2) sBoxlayer 変換では、表1に示す4ビット入
 出力の S-box S(·) による非線形変換が行われる。

 $y_i^r = S(x_i^r)$ for $i \in \{0, \dots, 15\}$.

(3) pLayer 変換では, ビットごとの並べ換えが 行われる.

$$z^{r}[P(j)] = y^{r}[j]$$
 for $j \in \{0, 1, \dots, 63\}$.

ここで,

$$P(j) = \begin{cases} 16 \ j \mod 63 & \text{if } j \in \{0, \dots, 62\} \\ 63 & \text{if } j = 63 \end{cases}$$

である.

鍵スケジュールにより秘密鍵から各段の addRound-Key 変換で用いられるラウンド鍵が生成される.ま ず 80 ビットの鍵レジスタに秘密鍵 K をストアする ($\kappa^1 = K$). 鍵レジスタの上位 64 ビットをr 段目のラ ウンド鍵として取り出す ($k^r = \kappa^r$ [16..79]). その後, 次の手順で鍵レジスタを更新する.

- $(\,1\,) \quad \kappa^{r+1} = \kappa^r \lll_{61} \quad .$
- (2) $\kappa^{r+1}[76..79] = S(\kappa^{r+1}[76..79])$.
- (3) $\kappa^{r+1}[15..19] = \kappa^{r+1}[15..19] \oplus r$.

本攻撃では、PRESENTの段数を削減する際に、最 後の post-whitening を省略しない. なお、本攻撃は 差分攻撃であり、秘密鍵に差分がない場合を考えるた め、post-whiteningの有無は攻撃に影響を与えない.

2.2 差分攻撃

本攻撃はビットごとの XOR 差分を考える差分攻撃 であり、差分の伝搬は非線形関数で確率的となる. $\delta_{\rm I}$ を入力差分、 $\delta_{\rm O}$ を出力差分とするとき、

$$S(x \oplus \delta_{\rm I}) \oplus S(x) = \delta_{\rm O} \tag{1}$$

を満たす解 $x \epsilon \delta_{I}$, δ_{O} に対する許容値と呼ぶ. δ_{I} , δ_{O} の組合せにより,許容値の個数は0個,2個,4個のいずれかである.許容値が0個の場合を除くと,S-box への入力がランダムに決まるとき, 2^{-3} または 2^{-2} の確率で許容値が入力される.また,入力差分が0でない S-box を活性 S-box と呼ぶ.

2.3 H-PRESENT

本研究は図 2 に示す倍ブロック長圧縮関数 [7] を対 象とする.この圧縮関数はブロック暗号 E を用いて構 成され、連鎖値 G. H 及び、メッセージブロック M

図 2 倍ブロック長圧縮関数 Fig. 2 Double-block-length compression function.

を入力とし、出力G'、H'を次のように計算する.

$$G' = f_{\mathcal{U}}(G, K) = E_K(G) \oplus G ,$$

$$H' = f_{\mathcal{L}}(G, K) = E_K(G \oplus c) \oplus G \oplus c .$$
(2)

ここで $K = M \parallel H$ であり, c は非零の定数である.

この倍ブロック長圧縮関数のブロック暗号 E に 80 ビット鍵の PRESENT を用いたものを, H-PRESENT と呼ぶ. H-PRESENT の出力は 128 ビットである.

3. 10 段の H-PRESENT に対する衝突攻撃

本章では、10段の PRESENT を用いた H-PRESENT に対する衝突攻撃を示す.

以下では、内部状態の変数に関する差分を Δx のように Δ を付けて表す. また $f_{\rm L}$ の内部状態を表す変数 に \hat{x} のように \hat{x} を付けて表す.

3.1 概 要

Gに関する差分を ΔG , Kに関する差分を ΔK と するとき, $f_{\rm U}$, $f_{\rm L}$ の出力に関する衝突をそれぞれ次 のように表すことができる.

$$f_{\rm U}(G,K) = f_{\rm U}(G \oplus \Delta G, K \oplus \Delta K)$$
 . (3)

$$f_{\rm L}(G,K) = f_{\rm L}(G \oplus \Delta G, K \oplus \Delta K)$$
 . (4)

本研究で提案する衝突攻撃では $\Delta G \neq \mathbf{0}, \ \Delta K = \mathbf{0}$ で ある衝突が得られる.

(G,K) が式 (3) と式 (4) の両式を満たすとき,
 H-PRESENT の圧縮関数の出力が衝突する. すなわち E
 に関して,

$$\begin{cases} E_K(G) \oplus E_K(G \oplus \Delta G) = \Delta G\\ E_K(G \oplus c) \oplus E_K(G \oplus \Delta G \oplus c) = \Delta G \end{cases}$$
(5)

を満たす (G, K) が見つかったとき, 圧縮関数の衝突 が生じている.

本攻撃は、まず f_U で衝突が起こる (G, K) を見つ け、その (G, K) について f_L でも衝突が起こるかを確 認する. f_U と f_L の両方で衝突が起こる (G, K) を見 つけるまでこれを繰り返す.

3.2 攻擊方法

本攻撃では、 $f_{\rm L}$ と $f_{\rm L}$ の両方で表 2 と図 3 に示さ れた 10 段の差分経路を用いる.これは、入力差分と 出力差分が等しくかつ各段の活性 S-box の個数が 2 以 下(ただし 1 段目については 2)となる 10 段の差分 経路のうち、差分確率が最大の差分経路である.また、 後述のように 1 段目から 3 段目までの活性 S-box の

表 2 10 段の差分経路とその確率 Table 2 10-round differential path and its probabilities.

段	差分	確率
1	$\Delta x_0^1 = 5, \ \Delta x_8^1 = 5$	
	$\Delta y_0^1 = 1, \ \Delta y_8^1 = 1$	2^{-6}
2	$\Delta x_0^2 = 1, \ \Delta x_2^2 = 1$	
	$\Delta y_0^2 = 9, \ \Delta y_2^2 = 9$	2^{-4}
3	$\Delta x_0^3 = 5, \ \Delta x_{12}^3 = 5$	
	$\Delta y_0^3 = 4, \ \Delta y_{12}^3 = 4$	2^{-6}
4	$\Delta x_8^4 = 1, \ \Delta x_{11}^4 = 1$	
	$\Delta y_8^4 = 9, \ \Delta y_{11}^4 = 9$	2^{-4}
5	$\Delta x_2^5 = 9, \ \Delta x_{14}^5 = 9$	
	$\Delta y_2^5 = 4, \ \Delta y_{14}^5 = 4$	2^{-4}
6	$\Delta x_8^6 = 4, \ \Delta x_{11}^6 = 4$	
	$\Delta y_8^6 = 5, \ \Delta y_{11}^6 = 5$	2^{-4}
7	$\Delta x_2^7 = 9, \ \Delta x_{10}^7 = 9$	
	$\Delta y_2^7 = 9, \ \Delta y_{10}^7 = 4$	2^{-4}
8	$\Delta x_8^8 = 4, \ \Delta x_{10}^8 = 4$	
	$\Delta y_8^8 = 5, \ \Delta y_{10}^8 = 5$	2^{-4}
9	$\Delta x_2^9 = 5, \ \Delta x_{10}^9 = 5$	
	$\Delta y_2^9 = 1, \ \Delta y_{10}^9 = 1$	2^{-6}
10	$\Delta x_0^{10} = 4, \ \Delta x_2^{10} = 4$	
	$\Delta y_0^{10} = 5, \ \Delta y_2^{10} = 5$	2^{-4}
	$\Delta z_0^{10} = 5, \ \Delta z_8^{10} = 5$	

入力を常に許容値とするため、4 段目以降の差分確率 が大きくなることなどを考慮して選択した.この差分 経路の入力差分は

$\Delta G = \texttt{0x0000} \ \texttt{0005} \ \texttt{0000} \ \texttt{0005}$

である.この差分経路には 20 個の活性 S-box が含ま れ、これらで差分の伝搬が確率的となる.この差分経 路全体の差分確率は 2⁻⁴⁶ である.入力差分と出力差 分が等しいため、 $f_{\rm U}$ と $f_{\rm L}$ のフィードフォワードで差 分がキャンセルされることにより衝突が得られる.

本攻撃では、 $f_{\rm U}$ の1段目から3段目に存在する6個 の活性 S-box S_0^1 , S_8^1 , S_0^2 , S_2^2 , S_0^3 , S_{12}^3 と, $f_{\rm L}$ の1 段目から3段目に存在する6個の活性 S-box \hat{S}_0^1 , \hat{S}_8^1 , \hat{S}_0^2 , \hat{S}_2^2 , \hat{S}_0^3 , \hat{S}_{12}^3 の入力をそれぞれ差分経路の差分の 許容値で固定することで、これらの S-box での差分の 伝搬を確率1で行う.これにより、表2と図3に示 された10段の差分経路の差分確率を2⁻³⁰とすること ができ、誕生日攻撃よりも効率の良い衝突攻撃が可能 となる.

3.2.1 S_0^1 , S_8^1 CONT

x¹₀, x¹₈ をそれぞれ入力差分 0x5, 出力差分 0x1 に 対する許容値 0x3, 0x6 のどちらかで固定することで,

図 3 10 段の差分経路 Fig. 3 10-round differential path.

 S_0^1, S_8^1 の入力を常に許容値にできる.

3.2.2 cの影響について

本攻撃では $f_{\rm U}$ で衝突が起こる (G, K) を見つけ, そ の (G, K) について $f_{\rm L}$ でも衝突が起こるかどうかを調 べる. このとき, $f_{\rm U}$ の1段目から3段目に存在する 6 個の活性 S-box に常に許容値が入力されるよう攻撃 を行う. このため $f_{\rm L}$ では, c の影響により,1段目か ら3段目の活性 S-box に許容値が入力されるのが確 率的になる可能性があるが、本攻撃ではこれらの活性 S-box にも常に許容値が入力されるよう攻撃を行うた め、攻撃が適用可能な c の値が制限される.以下では、 本攻撃が適用可能であるための c に関する十分条件に ついて考察する.

ここでは $E_K(G) \ge E_K(G \oplus c)$ の内部状態の XOR 差 分を考える. $c \ge 4$ ビットごとに, $c = c_{15} ||c_{14}|| \cdots ||c_0$ と表記する. 1 段目の S-box について, $x_i^1 \oplus \hat{x}_i^1 = c_i$ $(i \in \{0, ..., 15\})$ である.

(i) S_i^1 , c_i $(i \in \{1, \dots, 7, 9, \dots, 15\})$ $k \supset \psi \subset$

2 段目と 3 段目の活性 S-box \hat{S}_0^2 , \hat{S}_2^2 , \hat{S}_0^3 , \hat{S}_{12}^3 の入力は, 1 段目の全ての S-box の出力の最下位ビット にのみ依存している.したがって, c によりこれらの 値が変化しなければ, \hat{S}_0^2 , \hat{S}_2^2 , \hat{S}_0^3 , \hat{S}_{12}^3 には常に許容 値が入力される.

PRESENT の S-box の差分特性より, 0x1 と 0x8 以外の全ての入力差分には,最下位ビットが 0 とな る出力差分が存在する.したがって, $c_i \neq 0x1$ かつ $c_i \neq 0x8$ のとき, \hat{S}_0^2 , \hat{S}_2^2 , \hat{S}_0^3 , \hat{S}_{12}^3 に常に許容値を 入力することができ,本攻撃が適用可能となる. (ii) S_i^1 , c_i ($i \in \{0, 8\}$) について

1 段目の活性 S-box \hat{S}_0^1 , \hat{S}_8^1 にも常に許容値が入力

 $\hat{x}_0^1 = x_0^1 \oplus c_0$, $\hat{x}_8^1 = x_8^1 \oplus c_8$

されるよう攻撃を行う.

より,活性 S-box S_0^1 , S_8^1 , \hat{S}_0^1 , \hat{S}_8^1 の入力 x_0^1 , x_8^1 , \hat{x}_0^1 , \hat{x}_8^1 が全て許容値 (0x3 または 0x6) であるためには, c_0 , c_8 の値は 0x0 または 0x5 でなければならない. 更に, \hat{S}_0^3 , \hat{S}_{12}^2 の入力は, \hat{S}_0^2 , \hat{S}_2^2 を介して, \hat{S}_0^1 , \hat{S}_8^1 の両方の出力に依存している. このため, ΔG による \hat{S}_0^1 , \hat{S}_8^1 の入力差分が 0x5 であることから, $c_0 = c_8$ とすれば, S_0^3 , S_{12}^3 と同様に \hat{S}_0^3 , \hat{S}_{12}^3 にも許容値を入 力できる.

以上 (i), (ii) の二つの場合をまとめると、本攻撃が 適用可能であるための $c = c_{15} \| c_{14} \| \cdots \| c_0$ に関する 十分条件は以下のとおりである.

• $c_0 = c_8 = 0 \times 0$ # $c_0 = c_8 = 0 \times 5$.

• c_0 , c_8 以外の全ての c_i について, $c_i \neq 0$ x1 か つ $c_i \neq 0$ x8.

この条件を満たすcの値の個数は $14^{14} \times 2-1 \simeq 2^{54.3}$ であり,これはcの値の総数 ($2^{64} - 1$)のおよそ 0.12%である.

3.2.3 S_0^2 , S_2^2 , S_0^3 , S_{12}^3 COVC

ここまでで x_1^1, \ldots, x_{15}^1 のうち, 値を決めていなかっ

たものに値をランダムに割り当て,1段目の sBoxlayer と pLayer を計算し,2段目の addRoundKey 変換の 直前の状態 z^1 を求める.ここでラウンド鍵を用いて x_0^2 , x_2^2 を常に許容値とすることで,活性 S-box S_0^2 , S_2^2 での差分の伝搬を確率1で行う. x_0^2 , x_2^2 が入力差 分 0x1,出力差分 0x9 に対する許容値 0x0, 0x1, 0x4, 0x5 のいずれかになるように k_0^2 , k_2^2 を決める.

更に3段目の活性 S-box S_0^3 , S_{12}^3 の入力 x_0^3 , x_{12}^3 は, y_0^2 , y_1^2 , y_2^2 , y_3^2 に依存しているため, ラウンド 鍵によって x_0^3 , x_{12}^3 を固定するためには, これらをあ らかじめ求める必要がある. このために k_1^2 , k_3^2 の値 をランダムに決め, 先に決めた k_0^2 , k_2^2 を用いて, S_0^2 , S_1^2 , S_2^2 , S_3^2 の出力 y_0^2 , y_1^2 , y_2^2 , y_3^2 を求める.

ここまでで k_0^2, \ldots, k_3^2 の値が決まったため, κ^2 [16..31]の値が決まる. 鍵更新を考えると κ^3 [0..12], κ^3 [77..79]の値が決まったことになる.

 x_0^2, \ldots, x_3^2 について sBoxlayer と pLayer を計算し, z_0^2, z_{12}^2 を求める. 3 段目の活性 S-box S_0^3, S_{12}^3 でも 2 段目と同様に, x_0^3, x_{12}^3 が,入力差分 0x5,出力差 分 0x4 に対する許容値 0x8, 0xd になるよう k_0^3, k_{12}^3 を決める. これにより κ^3 [16..19], κ^3 [64..67] の値が 決まる.

ここまでで値が決まっていなかった κ^{3} [13..15], κ^{3} [20..63], κ^{3} [68..76] の 56 ビットの値をランダムに 決める.この時点で, 鍵レジスタと,メッセージ撹拌 部の状態が一意に定まるため,(*G*,*K*)と暗号文を計 算することができる.

この (G, K) について f_U で衝突が起こるかを確認 する.更に f_U で衝突が起こるとき,その (G, K) につ いて f_L でも衝突が起こるかを確認する. f_U と f_L の 両方で衝突が起これば,それは圧縮関数の衝突である.

この攻撃では,値をランダムに割り当てた鍵レジス タの 64 ビットが攻撃の自由度となる.

攻撃の手順を以下にまとめる.

S₀¹, S₈¹の入力を許容値で固定する.

(2) cの値に応じて, x_i^1 の値を固定する.

(3) S₀², S₂², S₀³, S₁₂³の入力をラウンド鍵を用いて固定する.

(4) κ^{3} [13..15], κ^{3} [20..63], κ^{3} [68..76] に値をラ ンダムに割り当てる.

 (5) (G, K) を求め、この (G, K) について f_U で 衝突が起こるかを確認する. 衝突していなければ Step 1 に戻る.

(6) Step 5 までで求めた (G, K) について $f_{\rm L}$ で

545

も衝突が起こるかを確認する. 衝突していなければ Step 1 に戻る.

3.3 計算量

本攻撃では,差分確率が 2^{-46} の差分経路に存在す る 20 個の活性 S-box のうち, $f_{\rm U}$ と $f_{\rm L}$ のそれぞれ 1 段目から 3 段目に存在する 6 個の活性 S-box への入 力が常に許容値となるように攻撃を行う.したがって, $f_{\rm U}$ で衝突が見つかる確率と, $f_{\rm L}$ で衝突が見つかる確 率は共に, $2^{-46+16} = 2^{-30}$ となる.

ここで攻撃の計算量の1単位を1回の圧縮関数呼 出しとする. Step 1 から Step 5 の1回の実行では, $f_U(G,K) \ge f_U(G \oplus \Delta G, K)$ を計算するので,1回の 圧縮関数呼出しの計算量に相当する. 同様に, Step 6 の1回の実行も1回の圧縮関数呼出しの計算量に相当 する. したがって,攻撃計算量は $2^{60} + 2^{30} \simeq 2^{60} \ge$ 見積もられる.

なお, Step 1 から Step 5 の 1 回の実行では, $f_U(G, K)$ のみを計算して各活性 S-box に許容値が 入力されているかどうかを確認することにより, $f_U(G \oplus \Delta G, K)$ を計算することなく衝突を得るこ とも可能である.更に,この場合,活性 S-box に許容 値が入力されないことが分かった時点で計算を打ち切 ることにより,更に計算量を削減することも可能であ る.このような手法は Step 6 にも適用できる.

4. 8 段の H-PRESENT に対する衝突攻撃

計算機実験を行うために,8段の PRESENT を用 いた H-PRESENT に対する衝突攻撃を検討する.

4.1 概 要

攻撃に用いた8段のPRESENTの差分経路を表3 と図4に示す.これは、入力差分と出力差分が等しく かつ各段の活性S-boxの個数が2以下(ただし1段目 については2)となる8段の差分経路のうち、差分確 率が最大の差分経路である.また、後述のように1段 目から3段目までの活性S-boxの入力を常に許容値と するため、4段目以降の差分確率が大きくなることな どを考慮して選択した.この差分経路の入力差分と出 力差分は

 $\Delta G = \texttt{0x0500} \ \texttt{0000} \ \texttt{0000} \ \texttt{0500}$

であり、全体の差分確率は 2⁻³⁶ である. 今回,

 $c = \texttt{0x0030} \ \texttt{0000} \ \texttt{0000} \ \texttt{0000}$

として攻撃を行った. このとき $c_{13} = x_{13}^1 \oplus \hat{x}_{13}^1 = 0x3$

表3 8段の差分経路とその確率	
-----------------	--

Table 3 8-round differential path and its probabilities.

段	差分	確率
1	$\Delta x_2^1 = 5, \ \Delta x_{14}^1 = 5$	
	$\Delta y_2^1 = 1, \ \Delta y_{14}^1 = 1$	2^{-6}
2	$\Delta x_0^2 = 4, \ \Delta x_3^2 = 4$	
	$\Delta y_0^2 = 5, \ \Delta y_3^2 = 5$	2^{-4}
3	$\Delta x_0^3 = 9, \ \Delta x_8^3 = 9$	
	$\Delta y_0^3 = 4, \ \Delta y_8^3 = 4$	2^{-4}
4	$\Delta x_8^4 = 1, \ \Delta x_{10}^4 = 1$	
	$\Delta y_8^4 = 9, \ \Delta y_{10}^4 = 9$	2^{-4}
5	$\Delta x_2^5 = 5, \ \Delta x_{14}^5 = 5$	
	$\Delta y_2^5 = 1, \ \Delta y_{14}^5 = 1$	2^{-6}
6	$\Delta x_0^6 = 4, \ \Delta x_3^6 = 4$	
	$\Delta y_0^6 = 5, \ \Delta y_3^6 = 5$	2^{-4}
7	$\Delta x_0^7 = 9, \ \Delta x_8^7 = 9$	
	$\Delta y_0^7 = 4, \ \Delta y_8^7 = 4$	2^{-4}
8	$\Delta x_8^8 = 1, \ \Delta x_{10}^8 = 1$	
	$\Delta y_8^8 = 9, \ \Delta y_{10}^8 = 9$	2^{-4}
	$\Delta z_2^{10} = 5, \ \Delta z_{14}^{10} = 5$	

となる. この経路でも、1 段目の全ての S-box の最下 位ビットが 2 段目から 3 段目に存在する 4 個の活性 S-box \hat{S}_0^2 , \hat{S}_3^2 , \hat{S}_0^3 , \hat{S}_8^3 の入力に影響を与えるため, $y_{13}^1 \oplus \hat{y}_{13}^1$ に最下位ビットが 0 である値 0x4 を選ぶ. $x_{13}^1 = 0x4$ のとき, $y_{13}^1 \oplus \hat{y}_{13}^1 = 0x4$ となる.

攻撃の手順を以下に示す.

(i) S¹₂, S¹₁₄, S²₀, S²₃, S³₀, S³₈の入力を許容値
 で, x¹₁₃ を 0x4 で固定し, f_U で衝突を見つける.

(ii) Step i で見つけた (G, K) について f_L で衝
 突が起こるかを確認する. 衝突していなければ Step i
 に戻る.

この攻撃では f_U と f_L のそれぞれで、1 段目から 3 段目に存在する 6 個の活性 S-box の入力を許容値で固 定するため、衝突が起こる確率は共に $2^{-36+14} = 2^{-22}$ となる.したがって圧縮関数の衝突を見つけるために 必要な計算量を 2^{44} と見積もることができる.

4.2 実験結果

計算機実験において,圧縮関数の衝突を1組見つけ るのに要した計算量の平均は,およそ2^{33.71}であった. これは計算量の見積り2⁴⁴と明らかに異なっている.

計算機実験において、 $f_{\rm U}$ で衝突を見つけるために Step i を実行した回数の平均は、 $2^{21.34}$ であった.こ れは、3 段目の pLayer 後の差分 Δz^3 から最後の差分 ΔG に至る差分経路が、この差分経路以外にも存在す

図 4 8 段の差分経路 Fig. 4 8-round differential path.

るからである. 我々は,表3の差分経路以外にも,差 分確率が 2^{-38} , 2^{-40} , 2^{-43} , 2^{-45} である経路をそれ ぞれ2個,1個,1個,1個見つけた. これらの経路の うち,差分がどの経路を通過しても $f_{\rm U}$ で衝突が起こる ため,これらの差分経路の確率の合計 $2^{-35.35}$ が,全体 の確率となる. したがって, $f_{\rm U}$ で衝突を1組見つける ために必要な Step i の実行回数は $2^{35.35-14} = 2^{21.35}$ と見積もることができ,この値は実験値とほぼ一致 する.

ここでは簡単のため, $f_{\rm U}$ において差分が表 3 の差 分経路を通り,衝突が起こる場合だけを考える. その 確率は $2^{-36+14} = 2^{-22}$ と見積もることができる. 一 方,計算機実験では,表 3 の差分経路を通り衝突が起 こる確率は, $2^{-22.01}$ であった. この理論値は実験値

衣 4 計谷値が入力される唯平の兄惧りと夫厥福?	表 4	許容値が入力	される	確率の見積	りと実験結果
--------------------------	-----	--------	-----	-------	--------

Table 4 Estimated and measured probabilities that admissible inputs are given.

活性 S-box	見積り	実験値
\hat{S}_8^4	2^{-2}	1
\hat{S}_{10}^{4}	2^{-2}	1
\hat{S}_2^5	2^{-3}	$2^{-1.26}$
\hat{S}_{14}^{5}	2^{-3}	$2^{-0.39}$
\hat{S}_0^6	2^{-2}	$2^{-1.56}$
\hat{S}_3^6	2^{-2}	$2^{-1.55}$
\hat{S}_0^7	2^{-2}	$2^{-1.99}$
\hat{S}_8^7	2^{-2}	$2^{-2.00}$
\hat{S}_{8}^{8}	2^{-2}	$2^{-2.02}$
\hat{S}_{10}^{8}	2^{-2}	$2^{-1.98}$

とほぼ一致する.

計算機実験において,表3の差分経路を通り $f_{\rm U}$ で 衝突が起こったときの(G, K)について $f_{\rm L}$ で衝突が起 こる確率は $2^{-12.70}$ であり,これは理論値の 2^{-22} と 大きく異なっている.このときの $f_{\rm L}$ の4段目から8 段目に存在する10個の活性S-boxに許容値が入力さ れた確率の実験値を表4に示す.

4.3 考

灳

 $f_{\rm U} \ge f_{\rm L}$ のどちらでも 1 段目から 3 段目までに存 在する活性 S-box には常に許容値が入力されるように 攻撃を行ったため、これらの活性 S-box で差分が伝搬 する確率は 1 である.表 4 に示した実験結果より、4 段目から 6 段目の活性 S-box \hat{S}_{8}^{4} , \hat{S}_{10}^{4} , \hat{S}_{5}^{5} , \hat{S}_{14}^{5} , \hat{S}_{0}^{6} , \hat{S}_{3}^{9} で、許容値が入力される確率の見積りと実験値が 異なっている.最初の見積りでは、各活性 S-box の入 力がランダムであると仮定して確率の計算を行ってい る.しかし、 $f_{\rm L}$ ではこれらの活性 S-box の入力に偏 りが生じていると考えられる.

 $f_{\rm U}$ で衝突が起こるとき, $f_{\rm U}$ の全ての活性 S-box に は許容値が入力されている.この攻撃では $f_{\rm U}$ で衝突 が起こる (G, K)を見つけ,その(G, K)について $f_{\rm L}$ で衝突が起こるかを確認する.このとき,cの影響で $f_{\rm L}$ の各活性 S-boxへの入力が $f_{\rm U}$ のときとは異なって くるが,cの影響の広がりが遅く,初期の段の S-box では許容値が入力されやすくなっていると考えられる. そこでcが各活性 S-boxの入力に与える影響について 考える.

4.3.1 \hat{S}_{8}^{4} , \hat{S}_{10}^{4} , \hat{S}_{2}^{5} , \hat{S}_{14}^{5} について

以下では, cによって生じる $f_{\rm U}$ と $f_{\rm L}$ の内部状態の XOR 差分を ∇ で表す.

 $c_{13} = 0x3$ より, \hat{S}_{13}^1 について $\nabla x_{13}^1 = 0x3$ である.

これに対する出力の差分が $\nabla y_{13}^1 = 0x4$ となるよう に攻撃を行ったため,次の段の \hat{S}_{11}^2 の入力について 常に $\nabla x_{11}^2 = 0x2$ となる. \hat{x}_{11}^2 がランダムに決まると き, ∇y_{11}^2 はそれぞれ 1/8 の確率で 0x3,0x6,0xa, 0xc,0xd,0xe となり,1/4 の確率で 0x5 となる. \hat{y}_{11}^2 は 3 段目の \hat{S}_{2}^3 , \hat{S}_{6}^3 , \hat{S}_{10}^3 , \hat{S}_{14}^3 の入力 $\hat{x}_{2}^3[3]$, $\hat{x}_{3}^3[3]$, $\hat{x}_{10}^3[3]$, $\hat{x}_{14}^3[3]$ に対応する.すなわち, ∇y_{11}^2 の値によ り $\nabla \hat{x}_{2}^3[3]$, $\nabla \hat{x}_{6}^3[3]$, $\nabla \hat{x}_{10}^3[3]$, $\nabla \hat{x}_{14}^3[3]$ のうち2 個な いし 3 個が 1 となる.

次に4段目の \hat{S}_{8}^{4} , \hat{S}_{9}^{4} , \hat{S}_{10}^{4} , \hat{S}_{11}^{4} に対する影響を考 える.これらの入力はそれぞれ, \hat{S}_{2}^{3} , \hat{S}_{6}^{3} , \hat{S}_{10}^{3} , \hat{S}_{14}^{3} の出力 \hat{y}_{2}^{3} [2], \hat{y}_{6}^{3} [2], \hat{y}_{10}^{3} [2], \hat{y}_{14}^{3} [2]に依存している.

ここで \hat{S}^4_8 , \hat{S}^4_{10} の入力 \hat{x}^4_8 , \hat{x}^4_{10} は,

 $\hat{x}_{8}^{4} = (\hat{y}_{3}^{3}[2] \| \hat{y}_{2}^{3}[2] \| \hat{y}_{1}^{3}[2] \| \hat{y}_{0}^{3}[2]) \oplus \hat{k}_{8}^{4}$,

 $\hat{x}_{10}^4 = (\hat{y}_{11}^3[2] \| \hat{y}_{10}^3[2] \| \hat{y}_{9}^3[2] \| \hat{y}_{8}^3[2]) \oplus \hat{k}_{10}^4$

である. x_8^4 , x_{10}^4 の値は常に許容値 (0x0, 0x1, 0x4, 0x5) であるため, $\nabla y_2^3[2] = 1$, $\nabla y_{10}^3[2] = 1$ であって も, \hat{x}_8^4 , \hat{x}_{10}^4 は許容値 (0x0, 0x1, 0x4, 0x5) となる. したがって, \hat{S}_8^4 , \hat{S}_{10}^4 で ΔG による差分が伝搬する確 率は 1 となり, 表 4 の実験値と一致する.

S-box の差分特性より,入力差分が 0x8 のとき,入 力がランダムに決まるならば,出力差分の下位から 2 番目(最下位ビットは 0 番目)のビットが 1 になる確 率は 1/2 である.すなわち, c による差分で \hat{S}_2^3 , \hat{S}_6^3 , \hat{S}_{10}^3 , \hat{S}_{14}^3 が活性となるとき,それぞれ 1/2 の確率で, \hat{S}_8^4 , \hat{S}_9^4 , \hat{S}_{10}^4 , \hat{S}_{11}^4 が活性となり,そのときの入力差 分は 0x4 である.

次に, \hat{S}_2^5 , \hat{S}_{14}^5 の入力は \hat{S}_8^4 , \hat{S}_9^4 , \hat{S}_{10}^4 , \hat{S}_{11}^4 の出力 に依存し,

$$\begin{split} \hat{x}_2^5 &= (\hat{y}_{11}^4[0] \| \hat{y}_{10}^4[0] \| \hat{y}_9^4[0] \| \hat{y}_8^4[0]) \oplus \hat{k}_2^5 \ , \\ \hat{x}_{14}^5 &= (\hat{y}_{11}^4[3] \| \hat{y}_{10}^4[3] \| \hat{y}_9^4[3] \| \hat{y}_8^4[3]) \oplus \hat{k}_{14}^5 \end{split}$$

である.

 \hat{S}_{8}^{4} , \hat{S}_{10}^{4} には先ほど示したとおり,常に差分経路の 許容値 (0x0, 0x1, 0x4, 0x5) のいずれかが入力され ている. S-box の差分特性として,入力差分が 0x4 の とき,0x0,0x1,0x4,0x5 が入力されると,出力差 分は 0x5 になる.すなわち, \hat{S}_{8}^{4} , \hat{S}_{10}^{4} が c による差分 で活性となるときは常に, \hat{S}_{2}^{5} について $\nabla x_{2}^{5}[0] = 1$ と なり, \hat{S}_{14}^{5} について $\nabla x_{14}^{5}[0] = 0$ となる.

 \hat{S}_{9}^{4} , \hat{S}_{11}^{4} について, S-box の差分特性より,入力差 分 0x4 のとき,入力がランダムに決まるならば,出力

	8	
\hat{S}_{11}^2 の出力	許容値(0x3 または 0x6)が入た	力される確率
差分 ∇y_{11}^2	\hat{S}_2^5	\hat{S}_{14}^{5}
3	$\frac{1}{8} \times \left(\frac{1}{2} \times \frac{3}{4}\right)$	$\frac{1}{8} \times \frac{3}{4}$
5	$\frac{1}{4} \times \left(\frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2}\right)$	$\frac{1}{4} \times 1$
6	$\frac{1}{8} \times \left(\frac{1}{2} \times \frac{3}{4}\right)$	$\frac{1}{8} \times \frac{3}{4}$
a	$\frac{1}{8} \times \left(\frac{3}{4} \times \frac{3}{4}\right)$	$\frac{1}{8} \times \left(\frac{3}{4} \times \frac{3}{4}\right)$
с	$\frac{1}{8} \times \left(\frac{3}{4} \times \frac{1}{2}\right)$	$\frac{1}{8} \times \frac{3}{4}$
d	$\frac{1}{8} \times \left(\frac{3}{4} \times \frac{1}{2} \times \frac{1}{2} + \frac{3}{4} \times \frac{1}{2} \times \frac{1}{2}\right)$	$\frac{1}{8} \times \frac{3}{4}$
е	$\frac{1}{8} \times \left(\frac{3}{4} \times \frac{1}{2} \times \frac{3}{4}\right)$	$\frac{1}{8} \times \left(\frac{3}{4} \times \frac{3}{4}\right)$
合計	$2^{-1.26}$	$2^{-0.39}$

表 5 \hat{S}_{2}^{5} , \hat{S}_{14}^{5} に許容値が入力される確率 Table 5 Probabilities that admissible inputs are given to \hat{S}_{2}^{5} and \hat{S}_{14}^{5} .

差分の最上位ビットが1になる確率と,最下位ビット が1になる確率は共に1/2である.

 $\hat{S}_{2}^{5}, \ \hat{S}_{14}^{5}$ への入力が許容値 (0x3, 0x6) となるのは, cによる入力の差分が 0x0 または 0x5 の場合である. この確率を表 5 にまとめる.この表より、 \hat{S}_2^5 に許容 値が入力される確率は 2^{-1.26}, Ŝ⁵₁₄ に許容値が入力さ れる確率は 2^{-0.39} となり, 表 4 の実験値と一致する. ただし、この表の確率は各 S-box の入力がランダム かつ独立に選択されることを仮定して計算されてお り、PRESENT の構造を考えるとこの仮定は適切で はない. 一方で, \hat{S}_2^3 , \hat{S}_6^3 , \hat{S}_{10}^3 , \hat{S}_{14}^3 はすべて 2 段目 の同じ4個の S-box から入力を得ているものの、こ こでは \hat{S}_{2}^{3} , \hat{S}_{6}^{3} , \hat{S}_{10}^{3} , \hat{S}_{14}^{3} それぞれの出力の下位から 2番目のビットにのみ着目している.更に, \hat{S}_{8}^{4} , \hat{S}_{9}^{4} , $\hat{S}_{10}^4, \, \hat{S}_{11}^4$ のそれぞれが入力を得ている3段目の4個の S-box の集合は互いに素である.これらを考慮すると, 各 S-box の入力がランダムかつ独立に選択されるとい う仮定は幾らかの妥当性を有していると考えられる.

表 5 に示された確率の計算の例を以下に二つ示す. 他の場合についても同様に計算できる.

まず, $\nabla y_{11}^2 = 0x5$ かつ \hat{S}_2^5 に許容値が入力される 確率を考える. $\nabla y_{11}^2 = 0x5$ のとき, cの差分による 3 段目の活性 S-box は \hat{S}_{10}^3 と \hat{S}_2^3 であり, 活性となり得 る 4 段目の S-box は \hat{S}_{10}^4 と \hat{S}_8^4 である. \hat{S}_2^5 への入力 が許容値となるのは, ∇x_2^5 が 0x0 または 0x5 の場合, すなわち, $\nabla y_{10}^4[0]$, $\nabla y_8^4[0]$ がともに 0 または共に 1 の場合である. $\nabla y_8^4[0] = 0$ となるのは, $\nabla y_2^3[2] = 0$ または, $\nabla y_2^3[2] = 1$ かつ $\nabla y_8^4[0] = 0$ のときである. 一方, $\nabla y_2^3[2] = 1$ ならば $\nabla y_8^4[0] = 1$ なので

$$\Pr[\nabla y_8^4[0] = 0] = \Pr[\nabla y_2^3[2] = 0] = \frac{1}{2}$$

である.同様に $\Pr[\nabla y_{10}^4[0] = 0] = 1/2$ である.した がって、 $\nabla y_{11}^2 = 0x5$ かつ \hat{S}_2^5 に許容値が入力される 確率は

$$\begin{aligned} \Pr[\nabla y_{11}^2 &= 0x5] \left(\Pr[\nabla y_{10}^4[0] = \nabla y_8^4[0] = 0] \right. \\ &+ \Pr[\nabla y_{10}^4[0] = \nabla y_8^4[0] = 1] \right) \\ &= \frac{1}{4} \times \left(\frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \right) \end{aligned}$$

となる.

次に、 $\nabla y_{11}^2 = 0$ xd かつ \hat{S}_2^5 に許容値が入力される 確率を考える. $\nabla y_{11}^2 = 0$ xd のとき、3 段目の活性 S-box は \hat{S}_{14}^3 , \hat{S}_{10}^3 , \hat{S}_2^3 であり、活性となり得る 4 段 目の S-box は \hat{S}_{11}^4 , \hat{S}_{10}^4 , \hat{S}_8^4 である. \hat{S}_2^5 への入力が許 容値となるのは、 ∇x_2^5 が 0x0 または 0x5 の場合、す なわち、 $\nabla y_{11}^4[0] = 0$ かつ $\nabla y_{10}^4[0] = \nabla y_8^4[0]$ の場合 である. $\nabla y_{11}^4[0] = 0$ となるのは、 $\nabla y_{14}^3[2] = 0$ また は $\nabla y_{14}^3[2] = 1$ かつ $\nabla y_{11}^4[0] = 0$ のときであり、

$$\begin{aligned} \Pr[\nabla y_{11}^4[0] &= 0] \\ &= \Pr[\nabla y_{14}^3[2] = 0] \\ &+ \Pr[\nabla y_{14}^3[2] = 1] \Pr[\nabla y_{11}^4[0] = 0] \\ &= \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4} \end{aligned}$$

である. したがって, $\nabla y_{11}^2 = 0$ xd かつ \hat{S}_2^5 に許容値 が入力される確率は

$$\begin{aligned} &\Pr[\nabla y_{11}^2 = 0 \text{xd}] \\ &(\Pr[\nabla y_{11}^4[0] = 0] \Pr[\nabla y_{10}^4[0] = \nabla y_8^4[0] = 0] \\ &+ \Pr[\nabla y_{11}^4[0] = 0] \Pr[\nabla y_{10}^4[0] = \nabla y_8^4[0] = 1]) \\ &= \frac{1}{8} \times \left(\frac{3}{4} \times \frac{1}{2} \times \frac{1}{2} + \frac{3}{4} \times \frac{1}{2} \times \frac{1}{2}\right) \end{aligned}$$

となる.

以上のとおり, \hat{S}_{8}^{4} , \hat{S}_{10}^{4} , \hat{S}_{2}^{5} , \hat{S}_{14}^{5} について, その 入力に偏りが生じていることを確認した. 10 段の PRESENT を用いた H-PRESENT に対する攻撃につい ても,実際の計算量と理論値との間に同様の差異が生 じているものと考えられる.なお暗号化の処理が進む につれて, cによる差分の影響が広がり,活性 S-box に許容値が入力される確率は,活性 S-box の入力がラ ンダムであると仮定して見積もる理論値に近づくと考 えられる.

4.4 衝突の例

8 段の H-PRESENT の衝突の例を表 6 に示す.

表 6 衝突の例(ここで $\Delta H = \mathbf{0}, \Delta M = \mathbf{0}$) Table 6 Example of collision.

G	e5ca	bff5	4076	c36d
ΔG	0500	0000	0000	0500
c	0030	0000	0000	0000
Η	4682	abff	5e37	30e9
M	f725			
G'	2b55	a3c1	6117	815a
H'	a117	c5b6	317a	5f65

5. む す び

本論文では、10段の H-PRESENT に対し、2⁶⁰の計算 量で攻撃ができることを示した.また8段の H-PRESENT に対する衝突攻撃の計算機実験の結果を示し、攻撃の 計算量の理論値と実験値の比較を行い、これらに生じ る差異は活性 S-box の入力の偏りが原因であることを 確認した.

謝辞 本論文に関して有益なコメントを下さった査 読者の方々に感謝致します.本研究の一部は JSPS 科 研費 21240001 の助成を受けています.

文

献

- M.R. Albrecht and C. Cid, "Algebraic techniques in differential cryptanalysis," FSE 2009, LNCS, vol.5665, pp.193–208, Springer, 2009.
- K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita, "Camellia: A 128-bit block cipher suitable for multiple platforms
 Design and analysis," SAC 2000, LNCS, vol.2012, pp.39–56, Springer, 2000.
- [3] A. Biryukov and I. Nikolić, "Automatic search for related-key differential characteristics in byteoriented block ciphers: Application to AES, Camellia, Khazad and others," EUROCRYPT 2010, LNCS, vol.6110, pp.322–344, Springer, 2010.
- [4] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y. Seurin, and C. Vikkelsoe, "PRESENT: An ultra-lightweight block cipher," CHES 2007, LNCS, vol.4727, pp.450–466, Springer-Verlag, 2007.
- [5] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, and Y. Seurin, "Hash functions and RFID tags: Mind the gap," CHES 2008, LNCS, vol.5154, pp.283–299. Springer-Verlag, 2008.
- J.Y. Cho, "Linear cryptanalysis of reduced-round PRESENT," CT-RSA 2010, LNCS, vol.5985, pp.302– 317, Springer, 2010.
- [7] S. Hirose, "Some plausible constructions of doubleblock-length hash functions," FSE 2006, LNCS, vol.4047, pp.210–225, Springer, 2006.
- [8] X. Lai and J.L. Massey, "A proposal for a new block encryption standard," EUROCRYPT 1990, LNCS,

vol.473, pp.389-404, Springer, 1991.

- K. Ohkuma, "Weak keys of reduced-round PRESENT for linear cryptanalysis," SAC 2009, LNCS, vol.5867, pp.249-265, Springer, 2009.
- [10] M. Wang, "Differential cryptanalysis of reducedround PRESENT," AFRICACRYPT 2008, LNCS, vol.5023, pp.40-49, Springer, 2008.
- [11] L. Wei, T. Peyrin, P. Sokolowski, S. Ling, J. Pieprzyk, and H. Wang, "On the (in)security of IDEA in various hashing modes," FSE 2012, LNCS, vol.7549, pp.163–179, 2012.
- [12] 小山卓麻,佐々木悠,國廣 昇,"DM-PRESENTの差 分特性の考察,"2013 年暗号と情報セキュリティシンポジ ウム, 3B4-4, 2013.

(平成 24 年 10 月 31 日受付, 25 年 3 月 4 日再受付)

小林 哲也 (正員)

2010 福井大・工・電気・電子卒.2012 同大大学院工学研究科電気・電子工学専攻 博士前期課程了.在学中,暗号及び情報セ キュリティに関する研究に従事.

廣瀬 勝一 (正員)

1988 京大・工・情報工学卒.1990 同大 大学院工学研究科情報工学専攻修士課程了. 1995 博士(工学).1990 京大・工・助手. 1998 京大院・情報学研究科・講師.2005 福井大・工・助教授.2009 福井大院・工学 研究・教授,現在に至る.暗号及び情報セ

キュリティに関する研究に従事.