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Cryptographic Hash Function

H : {0, 1}∗ → {0, 1}�

Properties

Preimage resistance (PR)

It is difficult to obtain x such that H(x) = y for given y.

Second preimage resistance (2ndPR)

It is difficult to obtain x′ such that H(x′) = H(x) for given x.

Collision resistance (CR)

It is difficult to obtain x, x′ such that x �= x′ and H(x) = H(x′).

PR 2ndPR CR

Complexity O(2�) O(2�) O(2�/2)
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Iterated Hash Function (Merkle-Damg̊ard)

• Compression function

F : {0, 1}� × {0, 1}b → {0, 1}�

• Initial value h0 ∈ {0, 1}�

Input m = (m1,m2, . . . ,ml), mi ∈ {0, 1}b for 1 ≤ i ≤ l

hl−1

hl = H(m)

ml−1 ml

h1 h2

m1 m2

h0 F FFF
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Iterated Hash Function

If MD-strengthening is used for padding, then

F is collision-resistant (CR) ⇒ H is CR

ml

m′
1 m′

2

h0 F FF

hm′
l
′

h0

m1

FF

m2

F

Advantage

• Only have to design a CR CF with fixed input length.

• Seems easier than to design a CR HF with variable IL from scratch.
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Compression Function Construction

• Customized (1990–)

– MDx family

MD4, MD5; RIPEMD-160; SHA-1, SHA-224/256/384/512

– Tiger

– Whirlpool

• Using a block cipher

– Single block length (SBL)

output-length = block-length

– Double block length (DBL)

output-length = 2 × block-length



5

Outline

• Brief overview of hash functions using a block cipher

Single/Double-block-length constructions

• Our DBL constructions using

– a smaller compression function

– a block cipher

• Related DBL constructions
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Motivation to Construct a Hash Function Using a Block Cipher

• MD5 and SHA-1 are vulnerable to Wang’s collision attack.

• Hash functions using AES may be resistant to Wang’s collision attack.

– S-box and nonlinear key scheduling

• AES-based KDF for KEM (Jonsson & Robshaw 2005)

– KEM-DEM using PKC and SKC without HF

• Useful for limited hardware
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Rate

A measure of efficiency of a hash function using a block cipher e

rate =
length of the message block of the CF

(number of invocations of e) × (block-length of e)

Higher rate, higher efficiency.
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Example: Constructions of SBL Compression Functions

e

mi

hi−1 hi emi

hi−1

hi emi

hi−1

hi

Davies-Meyer Matyas-Meyer-Oseas Miyaguchi-Preneel

Note)

SHA-1: DM scheme using a dedicated 160-bit block cipher

Whirlpool: MP scheme using a dedicated 512-bit block cipher W
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Preneel-Govaerts-Vandewalle Model (PGV Model)

Preneel, Govaerts, Vandewalle 93

e : {0, 1}n × {0, 1}n → {0, 1}n

x, k, z ∈ {hi−1,mi, hi−1 ⊕ mi, 0}

e

mi

hi−1 hix

k z

• 43 = 64 schemes

• rate = 1

• Some schemes are trivially insecure.
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Security of the schemes in the PGV Model

• Preneel, Govaerts and Vandewalle 93

– Security analysis against several generic attacks

– 12 schemes are collision-resistant (CR).

• Black, Rogaway and Shrimpton 02

– Provable security analysis in the ideal cipher model

– The same 12 schemes are CR.

Note) DM, MMO and MP schemes are CR.
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Ideal Cipher Model

Let e be an (n, κ) block cipher:

e : {0, 1}κ × {0, 1}n → {0, 1}n.

For each key k, e(k, ·) is an invertible random permutation.

e is evaluated by two kinds of oracle queries:

oracle query answer

e (key, plaintext) ciphertext

e−1 (key, ciphertext) plaintext
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Idea of the Proof

The DM compression function is CR in the ideal cipher model [Merkle 89]

hi = ek(x)⊕x or y⊕ e−1
k(y)

e

mi

hi−1 hi

k

x y

To compute hi, we have to ask

• (k, x) to e or

• (k, y) to e−1

hi for a new input is random in the ideal cipher model.

Any collision attack is at most as effective as the birthday attack.
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Why Discuss CR in the Ideal Cipher Model?

An almost ideal cipher may not produce a CR compression function.

ek(x) =

⎧⎨
⎩

x if k = 00 · · · 0 or 11 · · · 1
Rk(x) otherwise (Rk is a random permutation)

There is a trivial collision of DM compression function using e:

e

m = 00...0

h 0 e

m = 11...1

h 0

Similar examples can be constructed for 12 CR schemes in PGV model.
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Motivation to Investigate DBL Hash Function

Any SBL hash function using AES is not secure.

• Output length is 128 bit.

• Complexity of birthday attack ≈ 264.

Goal

DBL hash function using e : {0, 1}κ × {0, 1}n → {0, 1}n

• Complexity of collision attack ≈ 2n
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Example: Constructions of DBL Compression Functions (1/2)

[Brachtl, Coppersmith, et.al. 88]

Using an (n, n) block cipher

e

e

mi

gi-1

hi-1

gi

hi
e

e

mi

gi-1

hi-1 e

e gi

hi

MDC-2 MDC-4

rate = 1/2 1/4
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Example: Constructions of DBL Compression Functions (2/2)

[Lai, Massey 92]

Using an (n, 2n) block cipher (n-bit plaintext, 2n-bit key)

e

e

mi

gi−1

hi−1

gi

hi

e

e

mi

gi−1

hi−1

gi

hi

abreast Davies-Meyer tandem Davies-Meyer

rate = 1/2 1/2
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New Constructions of DBL Compression Functions

• Using a smaller compression function

– F (x) = (f(x), f(p(x)))

p is a permutation satisfying some properties

– Collision-resistant (CR) in the random oracle model

• Using a block cipher with key-length > block-length

– AES with 192/256-bit key-length

– CR in the ideal cipher model
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Related Work

• Satoh, Haga and Kurosawa 99

Attacks against rate-1 HFs using an (n, 2n) block cipher

• Hattori, Hirose and Yoshida 03

No CR rate-1 parallel-type CFs using an (n, 2n) block cipher

• Lucks 05

– F (g, h,m) = (f(g, h,m), f(h, g,m))

– CR if f is a random oracle

• Nandi 05

– F (x) = (f(x), f(p(x))), where p is a permutation

– CR schemes if f is a random oracle
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DBL Hash Function Using a Smaller Compression Function

• f is a smaller CF

• p is a permutation

– p ◦ p is an identity permutation

F (x) = (f(x), f(p(x)))

F (p(x)) = (f(p(x)), f(x))

f

p f

Fmi

gi−1

hi−1

gi

hi

f(x) and f(p(x)) are used only for F (x) and F (p(x)).

We can assume that an adversary asks x and p(x) to f simultaneously in

the random oracle model.
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Collision Resistance

Th. 1 Let F : {0, 1}2n+b → {0, 1}2n and F (x) = (f(x), f(p(x))).

Let H be a hash function composed of F .

Suppose that

• p ◦ p is an identity permutation

• p has no fixed points: p(x) �= x for ∀x

Advcoll
H (A)

def
= success prob. of a collision finder A for H

which asks q pairs of queries to f.

Then, Advcoll
H (A) ≤ q

2n
+

( q

2n

)2

for any A in the RO model.



21

Proof Sketch

F is CR ⇒ H is CR

Two kinds of collisions for F :

Pr[F (x) = F (x′) |x′ �= p(x)]

= Pr[f(x) = f(x′) ∧ f(p(x)) = f(p(x′))] =

(
1

2n

)2

Pr[F (x) = F (x′) |x′ = p(x)] = Pr[f(x) = f(p(x))] =
1

2n

A asks q pairs of queries to f : xj and p(xj) for j = 1, 2, . . . , q.

Advcoll
H (A) ≤ q

2n
+

( q

2n

)2
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Collision Resistance: A Better Bound

Th. 2 Let H be a hash function composed of F : {0, 1}2n+b → {0, 1}2n.

Suppose that

• p ◦ p is an identity permutation

• p(g, h,m) = (pcv(g, h), pm(m))

– pcv has no fixed points

– pcv(g, h) �= (h, g) for ∀(g, h)

f

p f

Fmi

gi−1

hi−1

gi

hi

Then, Advcoll
H (A) ≤ 3

( q

2n

)2

for any A in the RO model.
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Proof Sketch (1/2)

Two kinds of collisions for F :

1. Pr[F (x) = F (x′) |x′ �= p(x)] =

(
1

2n

)2

2. Pr[F (x) = F (x′) |x′ = p(x)] =
1

2n

It is easier to find a type-2 collision.

However, a type-2 collision is accompanied

by a pseudo-collision w,w′ such that

• F (w′) = pcv(F (w))

• w′ �= p(w)

F

x

F

w

F

x ′

F

w ′ collision
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Proof Sketch (2/2)

A collision for H implies

1. a collision for F such that

Pr[F (x) = F (x′) |x′ �= p(x)] =

(
1

2n

)2

2. a pseudo-collision for F such that

Pr[F (w′) = pcv(F (w)) |w′ �= p(w)] =

(
1

2n

)2

Advcoll
H (A) ≤ 3

( q

2n

)2

=
( q

2n

)2

+ 2
( q

2n

)2
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Th. 1 vs. Th. 2

The difference between the upper bounds is significant.

E.g.) n = 128, q = 280

Th. 1 Advcoll
H (A) ≤ q

2n
+

( q

2n

)2

≈ 2−48

Th. 2 Advcoll
H (A) ≤ 3

( q

2n

)2

≈ 2−94

E.g.) A permutation p satisfying the properties in Th. 2

p(g, h,m) = (g ⊕ c1, h ⊕ c2,m), where c1 �= c2



26

DBL Hash Function Composed of a Block Cipher

F = e

e

mi

gi−1

hi−1

gi

hic

c is a non-zero constant.

Note)

f

p f

Fmi

gi−1

hi−1

gi

hi

such that f =

e

mi

gi−1

hi−1

p(g, h,m) = (g ⊕ c, h,m)



27

DBL Hash Function Composed of a Block Cipher

e

e

mi

gi−1

hi−1

gi

hic

• can be constructed using AES with

192/256-bit key

• rate =

⎧⎨
⎩

1/2 with AES-256

1/4 with AES-192

• requires only one key scheduling

Simpler than abreast Davies-Meyer and tandem Davies-Meyer

e

e

mi

gi−1

hi−1

gi

hi

e

e

mi

gi−1

hi−1

gi

hi
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Collision Resistance

Th. 3 Let H be a HF composed of F : {0, 1}2n+b → {0, 1}2n such that

F =

e

e

mi

gi−1

hi−1

gi

hic

.

Advcoll
H (A)

def
= success prob. of a collision finder A for H

which asks q pairs of queries to (e, e−1).

Then, in the ideal cipher model, for any A and 1 ≤ q ≤ 2n−2,

Advcoll
H (A) ≤ 3

( q

2n−1

)2
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A Few More Examples of Compression Functions

e

e

mi

gi−1

hi−1

gi

hi

c

e

e

hi−1

gi

hic

mi‖gi−1
(1)

gi−1
(2)

For AES with 256-bit key For AES with 192-bit key

rate = 1/2 1/4
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Jonsson & Robshaw (PKC05)

e

e

mi

gi−1

hi−1

gi

hiδ

r 00‖r′ 01‖r′ 10‖r′ 11‖r′
δ(r) 01‖r′ 10‖r′ 11‖r′ 00‖r′

δ(r) = δ((a)2‖r′) = (a + 1 mod 4)2‖r′
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Nandi, Lee, Sakurai & Lee (FSE05)

x y

f1 f2 f3F

y z z x

fi : {0, 1}2n → {0, 1}n F : {0, 1}3n → {0, 1}2n

• Rate = 1/3 using (n, n) block ciphers for fi’s

• Complexity of collision attack = Θ(2
2n
3 )
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Peyrin, Gilbert, Muller & Robshaw (ASIACRYPT06)

H1 H2 M

f1 f2 f3 f5f4

H2 M M H1 H2H1

H1⊕H2

H
′
1 H

′
2

F

fi : {0, 1}2n → {0, 1}n F : {0, 1}3n → {0, 1}2n

• Rate = 1/5 using (n, n) block ciphers for fi’s

• Complexity of collision attack = Θ(2
2n
3 ) (Seurin, Peyrin FSE07)
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ISO/IEC 10118

Consists of four parts:

1. General

2. Hash-functions using an n-bit block cipher

3. Dedicated hash-functions

4. Hash-functions using modular arithmetic
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ISO/IEC 10118-2:2000 (Hash-functions using an n-bit block cipher)

• Cancels and replaces the first edition (ISO/IEC 10118-2:1994)

• Specifies four hash-functions

Hash-function one: Matyas-Meyer-Oseas

Hash-function two: MDC-2

Hash-function three

Hash-function four

Hash-functions 3/4 are complicated and inefficient

• Do not seem suitable for practical use



35

MDC-2 vs. Our Scheme

e: n-bit block, κ-bit key

MDC-2 Ours

Key Length κ n > n

Rate 1/2 (κ − n)/(2n)

Collision Attack Ω(20.6 n) Θ(2n)

Complexity of collision attack on MDC-2 is from [Steinberger 06].
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Conclusion

• Brief overview of hash functions using a block cipher

Single/Double-block-length constructions

• Our DBL constructions using

– a smaller compression function

– a block cipher

• Related DBL constructions
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Constructions As Efficient As MDC-2

e

e

mi
2

gi−1

hi−1

gi

hi

mi
1

e

e

mi
1

gi−1

hi−1

gi

hi

mi
2

• rate =
κ

2n
with an (n, κ) block cipher

• As secure as MDC-2? [Satoh, Haga, Kurosawa 99]


