
74
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.1 JANUARY 2008

PAPER Special Section on Cryptography and Information Security

Collision Resistance of Double-Block-Length Hash Function against
Free-Start Attack

Shoichi HIROSE†a), Member

SUMMARY In this article, we discuss the security of double-block-
length (DBL) hash functions against the free-start collision attack. We fo-
cus on the DBL hash functions composed of compression functions of the
form F(x) = (f (x), f (p(x))), where f is a smaller compression function
and p is a permutation. We first show, in the random oracle model, that a
significantly good upper bound can be obtained on the success probability
of the free-start collision attack with sufficient conditions on p and the set
of initial values. We also show that a similar upper bound can be obtained
in the ideal cipher model if f is composed of a block cipher.
key words: double-block-length hash function, random oracle model, ideal
cipher model, collision resistance, free-start collision attack

1. Introduction

A cryptographic hash function is a function from the set of
inputs of arbitrary length to the set of outputs of fixed length.
One of the most important security requirements for it is
collision resistance. For a cryptographic hash function, it
should be intractable to find a pair of distinct inputs both of
which correspond to the same output.

A cryptographic hash function H : {0, 1}∗ → {0, 1}�
usually consists of a compression function F : {0, 1}�+b →
{0, 1}� as follows:

1. From an input M ∈ {0, 1}∗, a binary sequence is
generated whose length is a multiple of b. Let
(m1,m2, . . . ,ml) be the sequence, where mi ∈ {0, 1}b.

2. For 1 ≤ i ≤ l, hi = F(hi−1,mi) is evaluated. h0 ∈ {0, 1}�
is an initial value. hl = H(M).

This type of cryptographic hash function is called an iterated
hash function. The first step of the above procedure is called
padding. It usually involves Merkle-Damgård strengthening
[6], [16], which appends the length of M in the last block ml.
In the second step, h0 is usually a constant.

There are two kinds of methods to construct a compres-
sion function: from scratch and using a cryptographic com-
ponent. For the latter method, typical examples of compo-
nents are block ciphers and (smaller) compression functions.
Suppose that AES or the compression function of MD5 or
SHA-1 are used for construction. Then, taking the birth-
day attack into consideration, we have to construct a hash
function whose output length is twice larger than that of the

Manuscript received March 27, 2007.
Manuscript revised July 13, 2007.
†The author is with the Graduate School of Engineering, Uni-

versity of Fukui, Fukui-shi, 910-8507 Japan.
a) URL: http://digcode2.fuee.fukui-u.ac.jp/˜hirose/

DOI: 10.1093/ietfec/e91–a.1.74

component. Such a kind of hash function is called a double-
block-length (DBL) hash function.

For DBL hash functions, Nandi considered a con-
struction of a compression function F of the form F(x) =
(f (x), f (p(x))), where f is a smaller compression function
and p is a permutation [17]. f may be composed of a block
cipher. He showed that, in the random oracle model, the suc-
cess probability of the collision attack is O(q/2n) on some
DBL hash functions composed of the compression functions
of the form shown above, where n is the output length of f
and q is the number of the queries to the oracle. On the other
hand, the authors gave an upper bound of O((q/2n)2) with a
sufficient condition on p in the random oracle or the ideal
cipher model [9]. Notice that (q/2n)2 � q/2n if q/2n � 1.

In this article, we discuss the resistance of DBL hash
functions given in [9] against the free-start collision attack
in the random oracle or the ideal cipher model. This attack
is also referred to as the pseudo-collision attack [15]. It is a
probabilistic algorithm whose input and output are defined
as follows:

Input The description of a DBL hash function H :
{0, 1}∗ → {0, 1}2n. Let IV be the set of initial values.

Output (h0,M), (h′0,M
′) such that

• H(h0,M) = H(h′0,M
′),

• (h0,M) � (h′0,M
′) and h0, h′0 ∈ IV .

In the definition of the conventional free-start collision at-
tack, IV = {0, 1}2n. If a hash function is collision-resistant
against the free-start attack, then one can feed a part of the
input instead of an initial value to the hash function. It im-
proves the efficiency especially for short inputs. One may
also, for example, personalize the hash function with an ini-
tial value of his/her own choice.

The collision resistance against the free-start attack can
be measured by the success probability in this setting. We
first show that the success probability of the free-start col-
lision attack is Θ(q/2n) in the random oracle or the ideal
cipher model, where q is the number of the queries to the or-
acle. Then, we show that the success probability of the free-
start collision attacks is O((q/2n)2) with sufficient conditions
on IV . The condition is quite simple and maxIV |IV | = 22n−1,
which does not necessarily hamper the possible usage men-
tioned above.

As was shown, for example, in [2] and [5], the proof
that a scheme is secure in the random oracle or the ideal
cipher model does not imply that its particular implemen-
tation is secure. However, it is still useful as a test-bed or

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers

HIROSE: COLLISION RESISTANCE OF DOUBLE-BLOCK-LENGTH HASH FUNCTION AGAINST FREE-START ATTACK
75

a sanity check. In particular, the collision resistance of a
hash function composed of a block cipher in the ideal ci-
pher model is significant because a collision-resistant hash
function cannot be constructed based solely on a black-box
pseudorandom permutation [21].

The organization of this article is as follows. In Sect. 2,
we provide the definitions for the following discussions and
give a short survey of related works. In Sect. 3, we discuss
the collision resistance of DBL hash functions composed of
smaller compression functions against the free-start attack.
In Sect. 4, we discuss the collision resistance of DBL hash
functions composed of block ciphers against the free-start
attack. Concluding remarks are given in Sect. 5.

2. Preliminaries

2.1 Iterated Hash Function

An iterated hash function H : {0, 1}∗ → {0, 1}� usually con-
sists of a compression function F : {0, 1}�×{0, 1}b → {0, 1}�,
a padding rule Pad, and an initial value h0 ∈ {0, 1}�.

For an input M ∈ {0, 1}∗, Pad first extends it and pro-
duces a sequence m whose length is a multiple of b. Let m =
(m1,m2, . . . ,ml), where mi ∈ {0, 1}b. Then, hi = F(hi−1,mi)
is computed successively for 1 ≤ i ≤ l and hl = H(M).

In this article, we assume an unambiguous padding
with the Merkle-Damgård strengthening [6], [16], which is
denoted by PadMDS. Let b′ be a constant such that b′ ≤ b.
For an input M, PadMDS produces M‖0t‖len(M). ‖ repre-
sents concatenation. len(M) ∈ {0, 1}b′ is the binary repre-
sentation of the length of M. Thus, we assume that H only
accepts M whose length is less than 2b′ . t ≥ 0 has the mini-
mum value such that the length of M‖0t‖len(M) is a multiple
of b.

We also assume that an initial value is chosen from a
set IV ⊆ {0, 1}�. We use the notation H(h0,M) to represent
the output of H for M and the initial value h0. We also
use the notation H = (F,Pad, IV) to represent an iterated
hash function H composed of a compression function F, a
padding rule Pad and a set of initial values IV .

2.2 DBL Hash Function

An iterated hash function whose compression function is
composed of a block cipher is called a single-block-length
(SBL) hash function if its output length is equal to the block
length of the block cipher. It is called a double-block-length
(DBL) hash function if its output length is twice larger than
the block length.

Let F be a compression function composed of a block
cipher. For an iterated hash function composed of F, the rate
r = |mi|/(σn) is often used as a measure of efficiency, where
σ is the number of block-cipher calls in F and n is the block
length of the block cipher.

In this article, we also call an iterated hash function a
DBL hash function if its compression function F is com-
posed of a smaller compression function f and its output

length is twice larger than that of f .

2.3 Random Oracle Model and Ideal Cipher Model

2.3.1 Random Oracle Model

Let Fn′,n = { f | f : {0, 1}n′ → {0, 1}n}. In the random oracle
model [1], the function f is assumed to be randomly selected
from Fn′,n. The oracle f first receives an input xi as a query.
Then, it returns a randomly selected output yi if the query
has never been asked before. It returns the same reply to the
same query.

2.3.2 Ideal Cipher Model

A block cipher with the block length n and the key length κ is
called an (n, κ) block cipher. Let e : {0, 1}κ×{0, 1}n → {0, 1}n
be an (n, κ) block cipher. Then, e(k, ·) is a permutation for
every k ∈ {0, 1}κ.

Let Bn,κ be the set of all (n, κ) block ciphers. In the ideal
cipher model, e is assumed to be randomly selected from
Bn,κ. The encryption e and the decryption e−1 are simulated
by the following two oracles.

The encryption oracle e first receives a pair of a key and
a plaintext as a query. Then, it returns a randomly selected
ciphertext. On the other hand, the decryption oracle e−1 first
receives a pair of a key and a ciphertext as a query. Then, it
returns a randomly selected plaintext. The oracles e and e−1

share a table of triplets of keys, plaintexts and ciphertexts,
which are produced by the queries and the corresponding
replies. Referring to the table, they select a reply to a new
query under the restriction that e(k, ·) is a permutation for
every k. They also add the triplet produced by the query and
the reply to the table.

2.4 Related Work

Preneel, Govaerts and Vandewalle [19] discussed the secu-
rity of SBL hash functions against several generic attacks.
They considered SBL hash functions composed of compres-
sion functions hi = e(k, x) ⊕ z, where e is an (n, n) block ci-
pher, k, x, z ∈ {hi−1,mi, hi−1 ⊕mi, c} and c is a constant. They
concluded that 12 out of 64 (= 43) hash functions are se-
cure against the attacks. However, they did not provide any
formal proofs.

Black, Rogaway and Shrimpton [3] investigated prov-
able security of SBL hash functions given in [19] in the ideal
cipher model. The most important result in their paper is
that 20 hash functions including the 12 mentioned above is
optimally collision-resistant. We use the term “optimally
collision-resistant” to mean that any attack to find a colli-
sion is at most as effective as the birthday attack.

Knudsen, Lai and Preneel [12] discussed the insecurity
of DBL hash functions with the rate 1 composed of (n, n)
block ciphers. Hohl, Lai, Meier and Waldvogel [10] dis-
cussed the security of compression functions of DBL hash
functions with the rate 1/2. On the other hand, the security

76
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.1 JANUARY 2008

of DBL hash functions with the rate 1 composed of (n, 2n)
block ciphers was discussed by Satoh, Haga and Kurosawa
[20] and by Hattori, Hirose and Yoshida [7]. These works
presented no construction for DBL hash functions with op-
timal collision resistance.

Many schemes with the rates less than 1 were also pre-
sented. Merkle [16] presented three DBL hash functions
composed of DES with the rates at most 0.276. They are op-
timally collision-resistant in the ideal cipher model. MDC-2
and MDC-4 [4] are also DBL hash functions composed of
DES with the rates 1/2 and 1/4, respectively. Lai and Massey
proposed the tandem/abreast Davies-Meyer [13]. They con-
sist of an (n, 2n) block cipher and their rates are 1/2. It is
an open question whether the four schemes are optimally
collision-resistant or not.

Recently, some constructions for DBL hash functions
were presented by Hirose [9]. They are similar to the tan-
dem Davies-Meyer but simpler. Moreover, they are opti-
mally collision-resistant. This work is largely motivated by
the work by Nandi [17]. Nandi generalized the results by
Lucks [14] and by Hirose [8].

Nandi, Lee, Sakurai and Lee [18] proposed an inter-
esting construction with the rate 2/3. However, they are
not optimally collision-resistant. Knudsen and Muller [11]
presented some attacks on it and illustrated its weaknesses,
none of which contradicts the security proof in [18].

3. DBL Hash Function in the Random Oracle Model

3.1 Compression Function

In this section, we consider the DBL hash functions com-
posed of compression functions given in the following defi-
nition. Their structure is also depicted in Fig. 1.

Definition 1: Let F : {0, 1}2n × {0, 1}b → {0, 1}2n be a
compression function such that (gi, hi) = F(gi−1, hi−1,mi),
where gi, hi ∈ {0, 1}n and mi ∈ {0, 1}b. F consists of
f : {0, 1}2n × {0, 1}b → {0, 1}n and a permutation p :
{0, 1}2n+b → {0, 1}2n+b as follows:

{
gi = FU(gi−1, hi−1,mi) = f (gi−1, hi−1,mi)
hi = FL(gi−1, hi−1,mi) = f (p(gi−1, hi−1,mi)).

p is represented by p(g, h,m) = (pcv(g, h),m), where pcv :

Fig. 1 The compression function in Definition 1.

{0, 1}2n → {0, 1}2n. pcv satisfies the following conditions:

• pcv(pcv(·)) is the identity permutation,
• pcv has no fixed points, that is, pcv(g, h) � (g, h) for any

(g, h), and
• pcv(g, h) � (h, g) for any (g, h).

Example 1: The conditions on pcv in Definition 1 do not
necessarily make the compression function F impractical.
Here is an example of the permutation pcv satisfying the
conditions:

pcv(g, h) = (g ⊕ c1, h ⊕ c2),

where c1 and c2 are distinct constants in {0, 1}n.

We will analyze the collision resistance of DBL hash
functions composed of F under the assumption that f is a
random oracle.

Two queries to the oracle f are required to compute the
output of F for an input. For this compression function, a
query to f for FU or FL uniquely determines the query to f
for the other since p is a permutation. Moreover, for every
w ∈ {0, 1}2n+b, f (w) and f (p(w)) are only used to compute
F(w) and F(p(w)), and w � p(w) from the properties of p in
Definition 1. Thus, it is reasonable to assume that a pair of
queries w and p(w) to f are asked at a time.

Definition 2: A pair of distinct inputs w, w′ to F are called
a matching pair if w′ = p(w). Otherwise, they are called a
non-matching pair.

Notice that w′ = p(w) iff w = p(w′) since p(p(·)) is the
identity permutation.

3.2 Collision Resistance

3.2.1 Definition

For a set S , let z
r← S represent random sampling from S

under the uniform distribution. For a probabilistic algorithm

M, let z
r← M mean that z is an output ofM and its distri-

bution is based on the random choices ofM.
Let H = (F,Pad, IV) be a DBL hash function, where

F is specified in Definition 1. The following experiment
FindColHF(A,H) is introduced to quantify the collision re-
sistance of H. The adversaryA with the oracle f is a prob-
abilistic collision-finding algorithm for H. A is for the col-
lision attack if |IV | = 1 and for the conventional free-start
collision attack if |IV | = 22n.

FindColHF(A,H)
f

r← F2n+b,n;

(v0,M), (v′0,M
′)

r← A f;

if v0, v
′
0 ∈ IV ∧ (v0,M) � (v′0,M

′)
∧ H(v0,M) = H(v′0,M

′)
∧A f made all the queries to f necessary to

compute both H(v0,M) and H(v′0,M
′)

return 1;
else return 0;

HIROSE: COLLISION RESISTANCE OF DOUBLE-BLOCK-LENGTH HASH FUNCTION AGAINST FREE-START ATTACK
77

The collision resistance of H is measured by
the probability that FindColHF(A,H) returns 1 in
this setting. Let Advcoll

H (A) be the probability that
FindColHF(A,H) returns 1. It is taken over the uniform
distribution on F2n+b,n and random choices of A. It is a
function of the number of the queries to f made byA. With-
out loss of generality, it is assumed that A does not ask the
same query twice. A can keep pairs of queries and their
corresponding answers by himself.

Essentially, we have to consider the time and space
complexity of A and the complexity of the description of
H. However, we do not make them explicit in the analysis
below. Once f is implemented, for example, by the SHA-1
compression function, it is easy to compute f , n is fixed, and
q is the major factor which determines the complexity ofA.
Moreover, we will see that we can take IV with a simple
description as well as p.

3.2.2 Analysis

In this section, we show the collision resistance of hash
functions composed of F in Definition 1 against the free-
start attack. We first present some lemmas which are used
to prove the collision resistance. These lemmas are on the
probability that a colliding pair of inputs is found for the
compression function F. We say that an algorithm succeeds
in finding a colliding pair of inputs w and w′ for F only if
it made all the queries to f necessary to compute both F(w)
and F(w′).

Lemma 1: Let H = (F,PadMDS, {0, 1}2n) be a hash func-
tion such that F : {0, 1}2n+b → {0, 1}2n is specified in Defini-
tion 1. LetA be a collision-finding algorithm for H with the
oracle f . A asks q pairs of queries to f in total. Then, there
exists an algorithm B with the oracle f which succeeds in
finding

1. a colliding pair of non-matching inputs for F, or
2. a colliding pair of matching inputs for F

with the probability Advcoll
H (A). B asks q pairs of queries to

f in total.

Proof: B first runs A. Suppose that A finds a colliding
pair ((g0, h0),M), ((g′0, h

′
0),M′) for H. Then, it is easy to see

that B finds a colliding pair of inputs for F by tracking the
computation of H backwards. The colliding pair is either
matching or non-matching. During the process, B needs no
other queries than those made byA. �

The following lemmas give upper bounds of the suc-
cess probabilities of the events listed in Lemma 1.

Lemma 2: Let F be a compression function specified in
Definition 1. Let Bc be any algorithm to find a colliding
pair of non-matching inputs for F. Suppose that Bc asks q
pairs of queries to f in total. Then, the success probability
of Bc is at most q(q − 1)/22n.

Proof: For 1 ≤ j ≤ q, let w j and p(w j) be the j-th pair of

queries made by Bc. For 2 ≤ j ≤ q, let C j be the event that
Bc finds a colliding pair of non-matching inputs for F with
the j-th pair of queries. Namely, it is the event that

(f (w j), f (p(w j))

= (f (w j′), f (p(w j′))) or (f (p(w j′)), f (w j′))

for some j′ < j. Since both f (w j) and f (p(w j)) are randomly
selected by the oracle,

Pr[C j] ≤ 2(j − 1)
22n

.

Let C be the event that Bc finds a colliding pair of non-
matching inputs. Then,

Pr[C] = Pr[C2 ∨ C3 ∨ · · · ∨ Cq]

≤
q∑

j=2

Pr[C j] ≤ q (q − 1)
22n

.

�

Lemma 3: Let F be a compression function specified in
Definition 1. Let B′c be any algorithm to find a colliding
pair of matching inputs for F. Suppose that B′c asks q pairs
of queries to f in total. Then, the success probability of B′c
is at most q/2n.

Proof: For 1 ≤ j ≤ q, let Cm
j be the event that B′c finds a

colliding pair of matching inputs for F with the j-th pair of
queries, that is, f (w j) = f (p(w j)). Thus,

Pr[Cm
j] =

1
2n
.

Let Cm be the event thatB′c finds a colliding pair of matching
inputs for F. Then,

Pr[Cm] = Pr[Cm
1 ∨ Cm

2 ∨ · · · ∨ Cm
q] ≤

q∑
j=1

Pr[Cm
j] =

q
2n
.

�

The following theorem is obvious from the above lem-
mas, and the proof is omitted.

Theorem 1: Let H = (F,PadMDS, {0, 1}2n) be a hash func-
tion such that F is a compression function specified in Defi-
nition 1. Then, for any collision-finding algorithmA asking
q pairs of queries to f in total,

Advcoll
H (A) ≤ q (q − 1)

22n
+

q
2n
.

Theorem 1 is valid as long as its upper bound is less
than 1. The following theorem shows that the upper bound
is almost optimal.

Theorem 2: Let H = (F,PadMDS, {0, 1}2n) be a hash func-
tion such that F is a compression function specified in Defi-
nition 1. Then, there exists a collision-finding algorithmA′
such that

Advcoll
H (A′) ≥ q

2n
− q (q − 1)

22n+1
,

whereA′ asks at most q pairs of queries to f in total.

Proof: Let m = PadMDS(ε) ∈ {0, 1}b, where ε is an empty

78
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.1 JANUARY 2008

sequence. Let A′ be a collision-finding algorithm for H
whose behaviour is given below.

1. Set i← 1 and Q← {0, 1}2n.
2. While 1 ≤ i ≤ q,

a. Select (g, h) ∈ Q at random and ask ((g, h),m) and
(pcv(g, h),m) to the oracle f .

b. If f ((g, h),m) � f (pcv(g, h),m), then set i← i + 1
and Q← Q \ {(g, h), pcv(g, h)}, and go to 2.

c. If f ((g, h),m) = f (pcv(g, h),m), then output
((g, h),m), (pcv(g, h),m) and stop.

3. Output fail and stop.

If f ((g, h),m) = f (pcv(g, h),m), then H((g, h), ε) =

H(pcv(g, h), ε). Thus, the pair of inputs produced by A′ is
a colliding pair for H. The probability that A′ succeeds in
finding a collision is

1 −
(
1 − 1

2n

)q

≥ q
2n
− q (q − 1)

22n+1
.

�

We can obtain a better bound than in Theorem 1 if we
take the set of initial values appropriately.

Lemma 4: Let H = (F,PadMDS, IV) be a hash function
such that

• F is specified in Definition 1, and
• if (g0, h0) ∈ IV , then pcv(g0, h0) � IV .

LetA be a collision-finding algorithm for H with the oracle
f . A asks q pairs of queries to f in total. Then, there exists
an algorithm B with the oracle f which succeeds in finding

1. a colliding pair of non-matching inputs for F, or
2. a pair of non-matching inputs w and w′ for F such that

F(w) = pcv(F(w′))

with the probability Advcoll
H (A). B asks q pairs of queries to

f in total.

Proof: B first runsA. Suppose thatA finds a colliding pair
((g0, h0),M) and ((g′0, h

′
0),M′) for H. Let (m1,m2, . . . ,ml) =

PadMDS(M) and (m′1,m
′
2, . . . ,m

′
l′) = PadMDS(M′).

Suppose that |M| � |M′|. Then, (gl−1, hl−1,ml) and
(g′l′−1, h

′
l′−1,m

′
l′) are a colliding pair of non-matching inputs

for F since ml � m′l′ .
On the other hand, suppose that |M| = |M′|. Then, it is

easy to see that B also finds a colliding pair of inputs for F
by tracking the computation of H backwards. In the remain-
ing part, it is shown that a colliding pair of matching inputs
for F is always accompanied by a pair of non-matching in-
puts w and w′ such that F(w) = pcv(F(w′)).

Suppose thatB finds a colliding pair of matching inputs
for F by tracking the computation of H. Let (gi−1, hi−1,mi)
and (g′i−1, h

′
i−1,m

′
i) be the pair. Then, (g′i−1, h

′
i−1) =

pcv(gi−1, hi−1). Since |M| = |M′|, both of (gi−1, hi−1) and
(g′i−1, h

′
i−1) are (i) initial values in IV , or (ii) outputs of

F. The former case contradicts the assumption on IV

that at most only one of (gi−1, hi−1) and pcv(gi−1, hi−1) is
in IV . Thus, B finds a pair of inputs (gi−2, hi−2,mi−1) and
(g′i−2, h

′
i−2,m

′
i−1) such that

(gi−1, hi−1) = F(gi−2, hi−2,mi−1), and

(g′i−1, h
′
i−1) = F(g′i−2, h

′
i−2,m

′
i−1).

This pair is non-matching since pcv(gi−1, hi−1) = (g′i−1, h
′
i−1)

� (hi−1, gi−1) from the assumption on pcv.
During the process above, B needs no other queries

than those made byA. �

As in the proof of Theorem 1, the following lemma
gives an upper bound of the probability of the second event
for F in Lemma 4. Notice that, if the algorithm B in
Lemma 4 succeeds in finding a pair of non-matching inputs
w and w′ for F such that F(w) = pcv(F(w′)), it made all the
queries to f necessary to compute both F(w) and F(w′).

Lemma 5: Let F be a compression function specified in
Definition 1. Let B′c be any algorithm to find a pair of non-
matching inputs w and w′ for F such that F(w) = pcv(F(w′)).
Suppose that B′c asks q pairs of queries to f in total and asks
all the queries necessary to compute both F(w) and F(w′).
Then, the success probability of B′c is at most 2q(q− 1)/22n.

Proof: For 2 ≤ j ≤ q, let C′j be the event that B′c
finds a pair of non-matching inputs w and w′ such that
F(w) = pcv(F(w′)) with the j-th pair of queriesw j and p(w j).
Namely, it is the event that

F(w j) = pcv(F(w j′)) or pcv(F(p(w j′)))

or

F(p(w j)) = pcv(F(w j′)) or pcv(F(p(w j′)))

for some j′ < j. Thus,

Pr[C′j] ≤
4(j − 1)

22n
.

Let C′ be the event that B′c finds a pair of non-matching
inputs w and w′ such that F(w) = pcv(F(w′)). Then,

Pr[C′] ≤
q∑

j=2

Pr[C′j] ≤
q∑

j=2

4(j − 1)
22n

=
2q(q − 1)

22n
.

�

Theorem 3: Let H = (F,PadMDS, IV) be a hash function
such that

• F is specified in Definition 1, and
• if (g0, h0) ∈ IV , then pcv(g0, h0) � IV .

Then, for any collision-finding algorithm A asking q pairs
of queries to f in total,

Advcoll
H (A) ≤ 3 q (q − 1)

22n
.

Theorem 3 directly follows from Lemmas 2, 4 and 5.
It is valid as long as its upper bound is less than 1.

HIROSE: COLLISION RESISTANCE OF DOUBLE-BLOCK-LENGTH HASH FUNCTION AGAINST FREE-START ATTACK
79

Remark 1: For q ≤ 2n−1, Theorem 3 gives a smaller upper
bound than Theorem 1. Their difference is significant. The
upper bound of Theorem 3 is at most 3 (q/2n)2. On the other
hand, the upper bound of Theorem 1 is about q/2n if q/2n �
1. For example, let n = 128 and q = 280. Then, the upper
bound of Theorem 3 is less than 2−94, while the upper bound
of Theorem 1 is about 2−48.

Remark 2: Let IV ⊂ {0, 1}2n be a set of initial values satis-
fying the condition given in Theorem 3. Since pcv(pcv(·))
is the identity permutation and pcv has no fixed points,
|IV | ≤ 22n−1. We can take, for example,

{(g, h) | (g, h) ∈ {0, 1}2n ∧ (g, h) ≺ pcv(g, h)}
as IV , where ≺ represents a lexicographical order with 0 ≺
1. In this case, |IV | = 22n−1.

Let pcv be the permutation in Example 1, and let c1 =

10n−1 and c2 = 0n. Then, we can have

IV = {(g, h) | (g, h) ∈ {0, 1}2n ∧msb(g) = 0},
where msb(g) is the most significant bit of g. Thus, we can
choose the other (2n − 1) bits of the initial value arbitrarily.

4. DBL Hash Function in the Ideal Cipher Model

4.1 Compression Function

In this section, the collision resistance of a DBL hash func-
tion composed of a compression function using a block ci-
pher is analyzed. The compression function specified in the
following definition is considered.

Definition 3: Let F : {0, 1}2n × {0, 1}b → {0, 1}2n be a com-
pression function such that (gi, hi) = F(gi−1, hi−1,mi), where
gi, hi ∈ {0, 1}n and mi ∈ {0, 1}b. F consists of an (n, n + b)
block cipher e as follows:

gi = FU(gi−1, hi−1,mi) = e(hi−1‖mi, gi−1) ⊕ gi−1

hi = FL(gi−1, hi−1,mi)

= e(hi−1‖mi, gi−1 ⊕ c) ⊕ gi−1 ⊕ c,

where c ∈ {0, 1}n \ {0n} is a constant.

The compression function in Definition 3 is also shown
in Fig. 2. It can be regarded as a variant of the compression
function specified in Definition 1, where f and p are speci-
fied as follows:

f (gi−1, hi−1,mi) = e(hi−1‖mi, gi−1) ⊕ gi−1,

p(gi−1, hi−1,mi) = (gi−1 ⊕ c, hi−1,mi).

F requires two invocations of e to produce an out-
put. However, these two invocations need only one key
scheduling of e. If F is implemented using AES with 192-
bit key-length, then n = 128, b = 64 and the rate is 1/4.
If implemented using AES with 256-bit key-length, then
n = b = 128 and the rate is 1/2.

Fig. 2 The compression function in Definition 3.

Two queries to the oracles e and e−1 in total are required
to compute the output of F for an input. It is apparent from
Fig. 2 that a query to e or e−1 and the corresponding reply
for FU (FL) uniquely determine the query to e for FL (FU).
Moreover, these two queries are only used to compute the
outputs of F for a matching pair of inputs. Thus, it is as-
sumed that a pair of queries to e, e−1 required to compute an
output of F are asked at a time.

4.2 Collision Resistance

4.2.1 Definition

The following experiment FindColHF(A,H) is similar to
the one in Sect. 3 except that the adversaryA is a collision-
finding algorithm with the oracles e, e−1.

FindColHF(A,H)
e

r← Bn,n+b;

(v0,M), (v′0,M
′)

r← Ae,e−1
;

if v0, v
′
0 ∈ IV ∧ (v0,M) � (v′0,M

′)
∧ H(v0,M) = H(v′0,M

′)
∧Ae,e−1

made all the queries to e, e−1

necessary to compute both H(v0,M)
and H(v′0,M

′)
return 1;
else return 0;

Let Advcoll
H (A) be the probability that

FindColHF(A,H) returns 1. It is taken over the uniform
distribution on Bn,n+b and random choices of A. Without
loss of generality, it is assumed that A asks at most only
once on a triplet of a key, a plaintext and a ciphertext ob-
tained by a query and the corresponding reply.

4.2.2 Analysis

In this part, we show the collision resistance of a hash func-
tion composed of F in Definition 3 against the free-start at-
tack.

Lemma 6: Let H = (F,PadMDS, IV) be a hash function
such that

• F is specified in Definition 3, and
• if (g0, h0) ∈ IV , then (g0 ⊕ c, h0) � IV .

Let A be a collision-finding algorithm for H, which asks q

80
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.1 JANUARY 2008

pairs of queries to e, e−1 in total. Then, there exists an algo-
rithm B with the oracles e, e−1 which succeeds in finding

1. a colliding pair of non-matching inputs for F, or
2. a pair of non-matching inputs w and w′ for F such that

F(w) = (FU(w′) ⊕ c, FL(w′))

with the probability Advcoll
H (A). B asks q pairs of queries to

e, e−1 in total.

The proof of Lemma 6 is omitted since it is similar to
that of Lemma 4. For the events listed in Lemma 6, upper
bounds of their success probabilities are given in the follow-
ing lemmas. We say that an algorithm succeeds only if it
made all the queries to e, e−1 necessary to compute the out-
puts of F for the inputs produced by it.

Lemma 7: Let F be the compression function specified in
Definition 3. Let Bc be any algorithm to find a colliding pair
of non-matching inputs for F. Suppose that Bc asks q pairs
of queries to e, e−1 in total. Then, for every 1 ≤ q ≤ 2n−2,
the success probability of Bc is at most q(q − 1)/22(n−1).

Proof: For 1 ≤ j ≤ q, let (k1
j‖k2

j , x j, y j) and (k1
j‖k2

j , x j ⊕
c, z j) represent the triplets of e obtained by the j-th pair of
queries and the corresponding answers.

For 2 ≤ j ≤ q, let C j be the event that Bc finds a
colliding pair of non-matching inputs for F with the j-th
pair of queries. Namely, it is the event that, for some j′ < j,

F(x j, k
1
j , k

2
j) = F(x j′ , k

1
j′ , k

2
j′) or F(x j′ ⊕ c, k1

j′ , k
2
j′)

or

F(x j ⊕ c, k1
j , k

2
j)

= F(x j′ , k
1
j′ , k

2
j′) or F(x j′ ⊕ c, k1

j′ , k
2
j′),

which is equivalent to

(y j ⊕ x j, z j ⊕ x j ⊕ c)

= (y j′ ⊕ x j′ , z j′ ⊕ x j′ ⊕ c) or

(z j′ ⊕ x j′ ⊕ c, y j′ ⊕ x j′).

Thus,

Pr[C j] ≤ 2(j − 1)
(2n − (2 j − 2))(2n − (2 j − 1))

≤ 2(j − 1)
(2n − (2 j − 1))2

.

Let C be the event that Bc finds a colliding pair of non-
matching inputs for F. Then, for 1 ≤ q ≤ 2n−2,

Pr[C] ≤
q∑

j=2

Pr[C j] ≤
q∑

j=2

2(j − 1)
(2n − (2 j − 1))2

≤
q∑

j=2

2(j − 1)
22(n−1)

≤ q(q − 1)
22(n−1)

.

�

Lemma 8: Let F be the compression function specified
in Definition 3. Let B′c be any algorithm to find a pair
of non-matching inputs w and w′ for F such that F(w) =
(FU(w′)⊕c, FL(w′)). Suppose that B′c asks q pairs of queries
to e, e−1 in total. Then, for every 1 ≤ q ≤ 2n−2, the success
probability of B′c is at most 2q(q − 1)/22(n−1).

Proof: Let C′j be the event that B′c finds a pair of non-
matching inputs for F such as given above with the j-th pair
of queries. Namely, it is the event that, for some j′ < j,

F(x j, k
1
j , k

2
j)

= (FU(x j′ , k
1
j′ , k

2
j′) ⊕ c, FL(x j′ , k

1
j′ , k

2
j′)) or

(FU(x j′ ⊕ c, k1
j′ , k

2
j′) ⊕ c, FL(x j′ ⊕ c, k1

j′ , k
2
j′)),

or

F(x j ⊕ c, k1
j , k

2
j)

= (FU(x j′ , k
1
j′ , k

2
j′) ⊕ c, FL(x j′ , k

1
j′ , k

2
j′)) or

(FU(x j′ ⊕ c, k1
j′ , k

2
j′) ⊕ c, FL(x j′ ⊕ c, k1

j′ , k
2
j′)).

It is equivalent to

(y j ⊕ x j, z j ⊕ x j ⊕ c)

= (y j′ ⊕ x j′ ⊕ c, z j′ ⊕ x j′ ⊕ c),

(z j′ ⊕ x j′ , y j′ ⊕ x j′),

(z j′ ⊕ x j′ ⊕ c, y j′ ⊕ x j′ ⊕ c) or

(y j′ ⊕ x j′ , z j′ ⊕ x j′).

Thus,

Pr[C′j] ≤
4 (j − 1)

(2n − (2 j − 1))2
.

Let C′ be the event that B′c finds a pair of non-matching
inputs w and w′ for F such that F(w) = (FU(w′)⊕ c, FL(w′)).
Then, for 1 ≤ q ≤ 2n−2,

Pr[C′] ≤
q∑

j=1

Pr[C′j] ≤
2 q (q − 1)

22(n−1)
.

�

The following theorem is obvious from Lemmas 6, 7
and 8.

Theorem 4: Let H = (F,PadMDS, IV) be a hash function
such that

• F is specified in Definition 3, and
• if (g0, h0) ∈ IV , then (g0 ⊕ c, h0) � IV .

Then, for any 1 ≤ q ≤ 2n−2 and any collision-finding algo-
rithmA asking q pairs of queries to f in total,

Advcoll
H (A) ≤ 3 q (q − 1)

22(n−1)
.

HIROSE: COLLISION RESISTANCE OF DOUBLE-BLOCK-LENGTH HASH FUNCTION AGAINST FREE-START ATTACK
81

Fig. 3 The compression function F1.

Fig. 4 The compression function F2.

4.3 Other Schemes

The compression function F given in Definition 3 can be
composed of an (n, 2n) or (n, 3n/2) block cipher. The pos-
sible drawback of F is that the message block mi is given to
the block cipher as a part of the key. Thus, the key input can
be chosen arbitrarily by adversaries.

The following compression function can be composed
of an (n, 2n) block cipher. The message block mi is fed into
the block cipher as a plaintext. It is given in Fig. 3. It re-
quires two invocations of key scheduling.

Definition 4: Let F1 : {0, 1}2n × {0, 1}n → {0, 1}2n be a
compression function (gi, hi) = F1(gi−1, hi−1,mi) such that

gi = e(gi−1‖hi−1,mi) ⊕ mi

hi = e((gi−1 ⊕ c)‖hi−1,mi) ⊕ mi,

where gi, hi,mi ∈ {0, 1}n and c ∈ {0, 1}n \ {0n} is a constant.

The other example of a compression function can be
composed of an (n, 3n/2) block cipher. It is depicted in
Fig. 4. It requires one invocation of key scheduling. The
message block is fed into the block cipher as a part of the
plaintext.

Definition 5: Let F2 : {0, 1}2n × {0, 1}n/2 → {0, 1}2n be a
compression function (gi, hi) = F2(gi−1, hi−1,mi) such that

gi = e(g(2)
i−1‖hi−1,mi‖g(1)

i−1) ⊕ (mi‖g(1)
i−1)

hi = e(g(2)
i−1‖hi−1, (mi‖g(1)

i−1) ⊕ c) ⊕ (mi‖g(1)
i−1) ⊕ c,

where gi, hi ∈ {0, 1}n, g(1)
i , g

(2)
i ,mi ∈ {0, 1}n/2, gi = g

(1)
i ‖g(2)

i ,
and c = 0n/2‖cg ∈ {0, 1}n is a constant such that cg ∈
{0, 1}n/2 \ {0n/2}.

For the hash functions composed of F1 or F2, we can
obtain the same upper bound on the adversarial advantage
for collision resistance as for F in Definition 3. The proofs
are omitted since they are similar to that of Theorem 4.

Theorem 5: Let H1 = (F1,PadMDS, IV) be a hash function
such that

• F1 is specified in Definition 4, and
• if (g0, h0) ∈ IV , then (g0 ⊕ c, h0) � IV .

Then, for any 1 ≤ q ≤ 2n−1 and any collision-finding algo-
rithmA asking q pairs of queries to f in total,

Advcoll
H1

(A) ≤ 3 q (q − 1)
22(n−1)

.

Theorem 6: Let H2 = (F2,PadMDS, IV) be a hash function
such that

• F2 is specified in Definition 5, and
• if (g0, h0) ∈ IV , then (g0 ⊕ (cg‖0n/2), h0) � IV .

Then, for any 1 ≤ q ≤ 2n−2 and any collision-finding algo-
rithmA asking q pairs of queries to f in total,

Advcoll
H2

(A) ≤ 3 q (q − 1)
22(n−1)

.

Theorem 5 is valid as long as its upper bound is less
than 1. It is valid for larger q than Theorems 4 and 6 since
F1 requires two invocations of key scheduling.

5. Concluding Remark

In this article, we have discussed the collision resistance of
DBL hash functions against the free-start attack. We have
considered DBL hash functions composed of compression
functions of the form F(x) = (f (x), f (p(x))). We have given
significantly better upper bounds on the success probabili-
ties of the free-start attack with the sufficient conditions on
the permutation p and the set of initial values.

Acknowledgements

We would like to thank the anonymous reviewers for their
comprehensive comments. This work was supported in part
by International Communications Foundation (ICF).

References

[1] M. Bellare and P. Rogaway, “Random oracles are practical: A
paradigm for designing efficient protocols,” Proc. 1st ACM Confer-
ence on Computer and Communications Security, pp.62–73, 1993.

[2] J. Black, “The ideal-cipher model, revisited: An uninstantiable
blockcipher-based hash function,” Proc. 13th Fast Software En-
cryption Workshop (FSE 2006), LNCS 4047, pp.328–340, 2006.
Also available at “Cryptology ePrint Archive: Report 2005/210,” at
http://eprint.iacr.org/

[3] J. Black, P. Rogaway, and T. Shrimpton, “Black-box analysis
of the block-cipher-based hash-function constructions from PGV,”
CRYPTO 2002 Proc., LNCS 2442, pp.320–335, 2002.

82
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.1 JANUARY 2008

[4] B.O. Brachtl, D. Coppersmith, M.M. Hyden, S.M. Matyas, Jr.,
C.H.W. Meyer, J. Oseas, S. Pilpel, and M. Schilling, “Data authenti-
cation using modification detection codes based on a public one-way
encryption function,” U.S. Patent # 4,908,861, March 1990.

[5] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle
methodology, revisited,” J. ACM, vol.51, no.4, pp.557–594, 2004.

[6] I. Damgård, “A design principle for hash functions,” CRYPTO’89
Proc., LNCS 435, pp.416–427, 1990.

[7] M. Hattori, S. Hirose, and S. Yoshida, “Analysis of double block
length hash functions,” Proc. 9th IMA International Conference on
Cryptography and Coding, LNCS 2898, pp.290–302, 2003.

[8] S. Hirose, “Provably secure double-block-length hash functions in a
black-box model,” Proc. 7th Internatinal Conference on Information
Security and Cryptology (ICISC 2004), LNCS 3506, pp.330–342,
2005.

[9] S. Hirose, “Some plausible constructions of double-block-length
hash functions,” Proc. 13th Fast Software Encryption Workshop
(FSE 2006), LNCS 4047, pp.210–225, 2006.

[10] W. Hohl, X. Lai, T. Meier, and C. Waldvogel, “Security of iterated
hash functions based on block ciphers,” CRYPTO’93 Proc., LNCS
773, pp.379–390, 1994.

[11] L. Knudsen and F. Muller, “Some attacks against a double length
hash proposal,” ASIACRYPT 2005 Proc., LNCS 3788, pp.462–473,
2005.

[12] L.R. Knudsen, X. Lai, and B. Preneel, “Attacks on fast double block
length hash functions,” J. Cryptol., vol.11, no.1, pp.59–72, 1998.

[13] X. Lai and J.L. Massey, “Hash function based on block ciphers,”
EUROCRYPT’92 Proc., LNCS 658, pp.55–70, 1993.

[14] S. Lucks, “A failure-friendly design principle for hash functions,”
ASIACRYPT 2005 Proc., LNCS 3788, pp.474–494, 2005.

[15] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of
Applied Cryptography, CRC Press, 1996.

[16] R.C. Merkle, “One way hash functions and DES,” CRYPTO’89
Proc., LNCS 435, pp.428–446, 1990.

[17] M. Nandi, “Towards optimal double-length hash functions,” Proc.
6th International Conference on Cryptology in India (INDOCRYPT
2005), LNCS 3797, pp.77–89, 2005.

[18] M. Nandi, W. Lee, K. Sakurai, and S. Lee, “Security analysis
of a 2/3-rate double length compression function in the black-box
model,” Proc. 12th Fast Software Encryption (FSE 2005), LNCS
3557, pp.243–254, 2005.

[19] B. Preneel, R. Govaerts, and J. Vandewalle, “Hash functions based
on block ciphers: A synthetic approach,” CRYPTO’93 Proc., LNCS
773, pp.368–378, 1994.

[20] T. Satoh, M. Haga, and K. Kurosawa, “Towards secure and fast hash
functions,” IEICE Trans. Fundamentals, vol.E82-A, no.1, pp.55–62,
Jan. 1999.

[21] D.R. Simon, “Finding collisions on a one-way street: Can se-
cure hash functions be based on general assumptions?,” EURO-
CRYPT’98 Proc., LNCS 1403, pp.334–345, 1998.

Shoichi Hirose received the B.E., M.E.
and D.E. degrees in information science from
Kyoto University, Kyoto, Japan, in 1988, 1990
and 1995, respectively. From 1990 to 1998, he
was a research associate at Faculty of Engineer-
ing, Kyoto University. From 1998 to 2005, he
was a lecturer at Graduate School of Informat-
ics, Kyoto University. From 2005, he is an asso-
ciate professor at Faculty of Engineering, Uni-
versity of Fukui. His current interests include
cryptography and information security. He re-

ceived Young Engineer Award from IEICE in 1997. He is a member of
IACR, ACM, IEEE and IPSJ.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

