
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.1 JANUARY 2005
33

PAPER Special Section on Cryptography and Information Security

Weak Security Notions of Cryptographic Unkeyed Hash Functions
and Their Amplifiability

Shoichi HIROSE†a), Member

SUMMARY Cryptographic unkeyed hash functions should satisfy
preimage resistance, second-preimage resistance and collision resistance.
In this article, weak second-preimage resistance and weak collision resis-
tance are defined following the definition of weak one-wayness. Preimage
resistance is one-wayness of cryptographic hash functions. The properties
of weak collision resistance is discussed in this article. The same kind of
results can be obtained for weak second-preimage resistance. Weak col-
lision resistance means that the probability of failing to find a collision is
not negligible, while collision resistance means that the success probability
is negligible. It is shown that there really exist weakly collision resistant
hash functions if collision resistant ones exist. Then, it is shown that weak
collision resistance is amplifiable, that is, collision resistant hash functions
can be constructed from weakly collision resistant ones. Unfortunately,
the method of amplification presented in this article is applicable only to a
certain kind of hash functions. However, the method is applicable to hash
functions based on discrete logarithms. This implies that collision resistant
hash functions can be obtained even if the discrete logarithm problem is
much easier than is believed and only weakly intractable, that is, exponen-
tiation modulo a prime is weakly one-way.
key words: cryptographic hash function, collision resistance, weak colli-
sion resistance, second-preimage resistance, weak second-preimage resis-
tance

1. Introduction

Hash functions are very important primitives in cryptog-
raphy. Hash functions in cryptography are classified in
two types: unkeyed hash functions and keyed hash func-
tions. The former ones are also called manipulation detec-
tion codes (MDCs). The latter ones are also called message
authentication codes (MACs). Excellent surveys are pre-
sented in [6], [8].

Cryptographic unkeyed hash functions should satisfy
preimage resistance, second-preimage resistance and colli-
sion resistance. Preimage resistance means that, given an
output, it is infeasible to obtain an input which produces the
output. Thus, preimage resistance is one-wayness for hash
functions. Second-preimage resistance means that, given
an input, it is infeasible to obtain another input which pro-
duces the same output as the given input. Collision resis-
tance means that it is infeasible to obtain two different in-
puts which produce the same output. In this article, weak
second-preimage resistance and weak collision resistance
are defined and analyzed.

Actually, the term “weak collision resistance” is also

Manuscript received March 22, 2004.
Manuscript revised July 9, 2004.
Final manuscript received August 18, 2004.
†The author is with the Graduate School of Informatics, Kyoto

University, Kyoto-shi, 606-8501 Japan.
a) E-mail: hirose@i.kyoto-u.ac.jp

found in previous literature, and is used to represent two
different security notions of hash functions. In some liter-
ature, second-preimage resistance is called weak collision
resistance [6]. In this case, collision resistance is called
strong collision resistance. On the other hand, in [2], weak
collision resistance is defined to be collision resistance of
keyed hash functions, and it is shown to be implied by un-
forgeability, that is, secure MAC [1]. In both cases, weak
collision rsistance is implied by one-wayness. Hence, from
Simon’s result [9], it is quite different from (strong) colli-
sion resistance. In [9], he showed that no provable construc-
tion of a collision resistant hash function exists based on
a “black box” one-way permutation, which means that the
one-way permutation is used as a subroutine, that is, the in-
ternal structure is not used.

For one-wayness, on the other hand, “weak” and
“strong” represent how difficult it is to find a preimage. A
function is called strongly one-way if, for every probabilistic
polynomial-time algorithm, the probability that it succeeds
in finding a preimage is negligible. A function is called
weakly one-way if, for every probabilistic polynomial-time
algorithm, the probability that it fails to find a preimage is
not negligible. In this framework, there exist weakly one-
way functions if there exist strongly one-way functions and
weakly one-way functions imply strongly one-way func-
tions. This equivalence is implicit in [10] and the proof is
in [5]. Though the proof is not so straightforward, the lat-
ter implication is proved by simple alignment as is easily

imagined. For example, let f be a function and g(x1, x2)
def
=

( f (x1), f (x2)). To find a preimage of a given output of g, it is
required to find preimages for both of the two f ’s of which
g is composed.

In this article, weak collision resistance and second-
preimage resistance are defined following the definition of
weak one-wayness. That is, weak collision resistance means
that the probability of failure to find a collision is not neg-
ligible. In contrast, strong collision resistance means that
the probability of success in finding a collision is negligi-
ble. The weak collision resistance is then analyzed using
the technique in [5]. The same kind of results are obtained
for second-preimage resistance.

First, it is shown that this new definition is not void.
It is shown that there exist weakly collision resistant hash
functions if there exist collision resistant hash functions.
Second, it is shown that weak collision resistance can be
amplifiable. However, simple alignment mentioned above
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does not work for collision resistance and second-preimage
resistance. For example, to find another input which pro-
duces the same output with the given input (x1, x2) of g
defined above, it is sufficient to find only one of x′1 or x′2
such that f (xi) = f (x′i ) and xi � x′i for i = 1, 2, because
g(x1, x2) = g(x′1, x2) = g(x1, x′2), (x1, x2) � (x′1, x2) and
(x1, x2) � (x1, x′2). It is shown in this article that strongly
collision resistant hash functions can be constructed from
weakly collision resistant hash functions satisfying the fol-
lowing property: h : X × X → Y , |X| = |Y |, and both
h(x, ·) and h(·, x) are permutations for every x ∈ X. Hash
functions based on discrete logarithms [3] satisfy the prop-
erty. Thus, strongly collision resistant hash functions can be
constructed even if the discrete logarithm problem is much
easier than is believed and only weakly intractable, that is,
exponentiation modulo a prime is weakly one-way. This
shows that the amplifiability result in this article also has
practical significance.

The rest of this article is organized as follows. In Sec-
tion 2, weak collision resistance and strong collision resis-
tance are formally defined. In Section 3, the existence of
weakly collision resistant hash functions is discussed. The
topic of Section 4 is the amplifiability of weak collision re-
sistance. In Section 5, an example of weakly collision re-
sistant hash functions are presented based on discrete log-
arithms. It is briefly mentioned that the same kind of re-
sults can be obtained for weak second-preimage resistance
in Section 6. A concluding remark is in Section 7.

2. Preliminaries

Let N be the set of positive integers. Let Hn be a set of hash
functions such that Hn = {hk | hk : D → R, k ∈ K}, where
D ⊆ {0, 1}�D(n), R ⊆ {0, 1}�R(n), K ⊆ {0, 1}�K (n), |D| > |R|, and
�D(n), �R(n) and �K(n) are polynomials in n. k is regarded as
an index. A pair of inputs (x, x′) ∈ D×D is called a collision
of a hash function hk if hk(x) = hk(x′) and x � x′.

A family of hash functions {Hn}n∈N is called weakly
collision resistant (weakly CR) if the probability of failure to
find a collision is not negligible for every efficient algorithm.

Definition 1: {Hn}n∈N is called a weakly CR family of hash
functions if

• there exists a probabilistic polynomial-time algorithm
KH which, with an input 1n, outputs k ∈ K,

• there exists a deterministic polynomial-time algorithm
MH which, with inputs k ∈ K and x ∈ D, outputs hk(x),
and

• there exists some polynomial p(n) such that, for every
probabilistic polynomial-time algorithm FH and every
sufficiently large n,

∑
k∈K

Pr[KH(1n) = k] Pr[FH(k) fails] ≥ 1
p(n)
,

where “FH(k) fails” means that it fails to find a collision
and the probability is taken over the coin tosses of KH

and FH . �

A family of hash functions {Hn}n∈N is called strongly
CR if the probability of success in finding a collision is neg-
ligible for every efficient algorithms.

Definition 2: {Hn}n∈N is called a strongly CR family of
hash functions if

• there exist a probabilistic polynomial-time algorithm
KH and a deterministic polynomial-time algorithm MH

as stated in Definition 1, and
• for every polynomial q(n), every probabilistic poly-

nomial-time algorithm FH and every sufficiently large
n,

∑
k∈K

Pr[KH(1n) = k] Pr[FH(k) succeeds] <
1

q(n)
,

where “FH(k) succeeds” means that it succeeds in find-
ing a collision and the probability is taken over the coin
tosses of KH and FH . �

From the definitions, it is obvious that strong CR im-
plies weak CR. In the followings, a family of hash functions
is simply called CR if it is strongly CR or weakly CR.

3. Existence of a Weakly Collision Resistant Family of
Hash Functions

In this section, it is shown that there exists a weakly CR
family of hash functions if there exists a CR family of hash
functions.

Let Hn = {hk | hk : D → R, k ∈ K}. For a family of
hash functions {Hn}n∈N, a family of hash functions {Fn}n∈N
is defined as follows.

• Fn = Hn ∪{ f }, where f : D→ R, f is polynomial-time
computable, and its collision is easy to find.

• KF is an algorithm for sampling an index. With an input
1n, it proceeds as follows.

1. It selects u1 ∈ {0, 1}�log n	 at random.
2. It runs KH(1n).
3. It outputs u = (u1, u2), where u2 is the output of

KH(1n) in the previous step.

• Let Fn = { fu | fu : D→ R, u ∈ {0, 1}�log n	 × K}. Then,

f(u1,u2) =

{
hu2 if u1 = 0�log n	
f otherwise.

It is obvious that {Fn}n∈N is not strongly CR. There ex-
ists a probabilistic polynomial-time algorithm such that the
probability of its success in finding a collision is at least
1 − 1/n.

Theorem 1: If {Hn}n∈N is CR, then {Fn}n∈N is weakly CR.
�

(Proof) Suppose that {Fn}n∈N is not weakly CR. For simplic-
ity, let m = �log n	 and L = {0, 1}m. Then, for every polyno-
mial p(n), there exists a probabilistic polynomial-time algo-
rithm AF such that,
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∑
u∈L×K

Pr[KF(1n) = u] Pr[AF(u) succeeds] ≥ 1 − 1
p(n)

for infinitely many n’s. “AF(u) succeeds” means that AF(u)
succeeds in finding a collision, that is, AF(u) = (x, x′),
fu(x) = fu(x′) and x � x′.∑

u∈L×K

Pr[KF(1n) = u] Pr[AF(u) succeeds]

=
∑
u∈L×K
u1=0m

Pr[KF(1n) = u] Pr[AF(u) suc.]

+
∑
u∈L×K
u1�0m

Pr[KF(1n) = u] Pr[AF(u) suc.]

≤
∑
u2∈K

Pr[KF(1n) = (0m, u2)] Pr[AF(0m, u2) suc.]

+
∑
u∈L×K
u1�0m

Pr[KF(1n) = u]

=
∑
u2∈K

Pr[KF(1n) = (0m, u2)] Pr[AF(0m, u2) suc.]

+

(
1 − 1

2m

)
.

Thus,∑
u2∈K

Pr[KF(1n) = (0m, u2)] Pr[AF(0m, u2) suc.]

≥ 1
2m
− 1

p(n)
.

Let AH be an algorithm which, with an input k ∈ K,
runs AF(0m, k) and outputs its output. Then,∑

k∈K

Pr[KH(1n) = k] Pr[AH(k) suc.]

= 2m
∑
u2∈K

Pr[KF(1n) = (0m, u2)] Pr[AF(0m, u2) suc.]

≥ 1 − 2m

p(n)
> 1 − 2n

p(n)
,

which implies that {Hn}n∈N is not weakly CR. �

4. Amplifiability of Weak Collision Resistance

In this section, it is shown that weak CR can be amplifiable,
that is, a strongly CR family of hash functions can be con-
structed from a weakly CR family of hash functions. Unfor-
tunately, the proposed method of construction is applicable
only to families of hash functions with an additional prop-
erty. However, in the next section, it is mentioned that there
really exists a (weakly) CR family of hash functions with
the property.

Theorem 2: A strongly CR family of hash functions is
able to be constructed from any weakly CR family of hash
functions

Fig. 1 A hash function gv ∈ Gn,5.

Hn = {hk | hk : X × X → Y, k ∈ K}
such that |X| = |Y | and both hk(x, ·) and hk(·, x) are permuta-
tions for every k and x. �

(Proof) Let

Gn,d = {gv | gv : Xd+1 → Yd, v ∈ Kd}
such that

gv(x1, x2, . . . , xd+1)

= (hk1 (x1, x2), hk2 (x2, x3), . . . , hkd (xd, xd+1))

for k j ∈ K for j = 1, . . . , d and v = (k1, k2, . . . , kd). Fig. 1
shows an example for d = 5.

It is obvious that there exists a probabilistic
polynomial-time algorithm MG which, with inputs v =
(k1, . . . , kd) ∈ Kd and x = (x1, . . . , xd+1) ∈ Xd+1, outputs
gv(x). MG simply runs MH(ki, (xi, xi+1)) for i = 1, 2, . . . , d.

Let KG be an algorithm which, with an input 1n,
runs KH(1n) d times independently. KG is a probabilis-
tic polynomial-time algorithm for sampling an index of the
hash functions in Gn,d if d is a polynomial in n.

Lemma 1: For every gv ∈ Gn,d, if

• gv(x1, x2, . . . , xd+1) = gv(x′1, x
′
2, . . . , x

′
d+1) and

• (x1, x2, . . . , xd+1) � (x′1, x
′
2, . . . , x

′
d+1),

then x j � x′j for j = 1, 2, . . . , d + 1. ♦

(Proof) This lemma is obvious from the assumption on Hn

that both hk(x, ·) and hk(·, x) are permutations for every k and
x. �

In the remaining part, it is shown that {Gn,d}n∈N is
strongly CR with respect to the algorithm KG for every
weakly CR family {Hn}n∈N, where d is determined based on
the weakness of CR of {Hn}n∈N.

Let p(n) be the polynomial such that, for every proba-
bilistic polynomial-time algorithm FH and every sufficiently
large n,

∑
k∈K

Pr[KH(1n) = k] Pr[FH(k) fails] ≥ 1
p(n)
.

Let d = n p(n) and d is denoted by d(n) to make it explicit
that it depends on n.

Suppose that {Gn,d(n)}n∈N is not strongly CR, that is,
there exists a probabilistic polynomial-time algorithm AG

and a polynomial q such that
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∑
v∈Kd(n)

Pr[KG(1n) = v] Pr[AG(v) succeeds] ≥ 1
q(n)

(1)

for infinitely many n’s.
Let CH be a probabilistic polynomial-time algorithm

which, with an input k ∈ K, runs the following procedure
BH b(n) = 2 n d(n) q(n) times.

BH(k) /* k ∈ K */
{
for ( j = 1 to d(n)) {

(k1, k2, . . . , kd(n))← KG(1n);
(x, x′)← AG(v);
/* v = (k1, . . . , k j−1, k, k j+1, . . . , kd(n))

*/

if (gv(x) = gv(x′) and x � x′) {
output ((x j, x j+1), (x′j, x

′
j+1));

halt;

}
}

}
From Lemma 1, BH(k) succeeds in finding a collision

of hk if AG(v) succeeds in finding a collision of gv. Let B =
{k | k ∈ K, Pr[BH(k) succeeds] > n/b(n)}.

Lemma 2: Pr[CH(k) succeeds] > 1 − 1
2n

for every k ∈ B.
♦

(Proof) Since CH(k) runs BH(k) b(n) times,

Pr[CH(k) fails] <

(
1 − n

b(n)

)b(n)

<
1
2n

. �

Lemma 3: Pr[KH(1n) ∈ B] > 1− 1
2 p(n)

for infinitely many

n’s. ♦

(Proof) Suppose that Pr[KH(1n) ∈ B] ≤ 1 − 1
2 p(n)

for every

sufficiently large n. It is shown that there is a contradiction
between this assumption and the inequality (1).

∑
v∈Kd(n)

Pr[KG(1n) = v] Pr[AG(v) succeeds]

=
∑

v∈Kd(n)\Bd(n)

Pr[KG(1n) = v] Pr[AG(v) suc.]

+
∑
v∈Bd(n)

Pr[KG(1n) = v] Pr[AG(v) suc.].

Let

σ1(n)
def
=

∑
v∈Kd(n)\Bd(n)

Pr[KG(1n) = v] Pr[AG(v) suc.],

σ2(n)
def
=

∑
v∈Bd(n)

Pr[KG(1n) = v] Pr[AG(v) suc.].

Let K(l)
H (1n) represent the l-th run of KH(1n) of KG(1n)

for 1 ≤ l ≤ d(n).

σ1(n)

=
∑

v∈Kd(n)\Bd(n)


d(n)∏
l=1

Pr[K(l)
H (1n) = kl]

 Pr[AG(v) suc.]

≤
d(n)∑
j=1

∑
ki∈K

1≤i≤d(n),i� j
k j∈K\B


d(n)∏
l=1

Pr[K(l)
H (1n) = kl]

 Pr [AG(v) suc.]

def
=

d(n)∑
j=1

σ′1(n, j).

σ′1(n, j)

=
∑

k j∈K\B
Pr[K( j)

H (1n) = k j] ×

∑
ki∈K

1≤i≤d(n),i� j


d(n)∏
l=1
l� j

Pr[K(l)
H (1n) = kl]

 Pr[AG(v) suc.]

≤ max
k j∈K\B

∑
ki∈K

1≤i≤d(n)
i� j


d(n)∏
l=1
l� j

Pr[K(l)
H (1n) = kl]

 Pr[AG(v) suc.]

≤ max
k j∈K\B

Pr[BH(k j) suc.]

≤ n
b(n)
.

Thus, σ1(n) ≤ n d(n)
b(n)

.

On the other hand, from the assumption that

Pr[KH(1n) ∈ B] ≤ 1 − 1
2 p(n)

,

σ2(n) ≤
∑
v∈Bd(n)

Pr[KG(1n) = v]

≤
(
1 − 1

2p(n)

)d(n)

<
1

2n/2
<

n d(n)
b(n)

for every sufficiently large n.
Hence,∑
v∈Kd(n)

Pr[KG(1n) = v] Pr[AG(v) succeeds]

<
2n d(n)

b(n)
<

1
q(n)
,

which causes a contradiction. �

From Lemmas 2 and 3, for infinitely many n’s,∑
k∈K

Pr[KH(1n) = k] Pr[CH(k) succeeds]

≥
∑
k∈B

Pr[KH(1n) = k] Pr[CH(k) succeeds]

>

(
1 − 1

2n

)∑
k∈B

Pr[KH(1n) = k]

>

(
1 − 1

2n

) (
1 − 1

2 p(n)

)
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> 1 − 1
p(n)
,

which contradicts the assumption that every probabilistic
polynomial-time algorithm fails to find a collision with
probability at least 1/p(n) for every sufficiently large n. �

From Theorem 2, a strongly CR family of hash func-
tions with fixed input length is obtained. A strongly CR
family of hash functions with variable input length can be
obtained with cascade construction owing to Merkle [7] and
Damgård [4].

5. A Weakly CR Family of Hash Functions with the
Property in Theorem 2

A family of hash functions based on discrete logarithms
[3] is introduced first. Precisely speaking, the definition of
index-sampling algorithm is different from the one in Defi-
nitions 1 and 2.

For a positive integer a, let Za = {0, 1, 2, . . . , a− 1} and
Z
∗
a = {z | z ∈ Za ∧ gcd(z, a) = 1}.

SH is a probabilistic polynomial-time algorithm which,
with an input 1n, produces p and α, where p is an n-bit
prime such that q = (p − 1)/2 is a prime and α is an ele-
ment of order q in Z∗p. p and α are shared by all the hash
functions corresponding to the parameter n. KH is a proba-
bilistic polynomial-time algorithm which, with inputs p and
α, produces an element β of order q in Z∗p at random. β is
regarded as an index.

Let Gp = {αs | s ∈ Zq}. The family of hash functions
{H(p,α)

n }n∈N is defined by

H(p,α)
n =

{
hβ

∣∣∣∣∣ hβ : Zq × Zq → Gp, β ∈ Gp,
hβ(x1, x2) = αx1βx2 mod p

}
.

Let us discuss the CR of {H(p,α)
n }n∈N. First, a discrete

logarithm problem (DLP) is defined.

Definition 3 (DLP): For given p, α, β, compute logα β mod
p, where p and α is the output of SH(1n), β is the output of
KH(p, α). �

The following lemma states that {H(p,α)
n }n∈N is weakly

CR even if the DLP turns out to be much easier than is be-
lieved. The proof is easy and omitted.

Lemma 4: Suppose that the DLP is weakly intractable,
that is, the probability of failure to solve the DLP with re-
spect to (p, α) produced by SH(1n) is not negligible: There
exists some polynomial ξ(n) such that, for every probabilis-
tic polynomial-time algorithm J and every sufficiently large
n,

∑
β∈Gp

Pr[KH(p, α) = β] Pr[J(p, α, β) fails] ≥ 1
ξ(n)
.

Then, {H(p,α)
n }n∈N is weakly CR. �

{H(p,α)
n }n∈N is not strongly CR if the probability of success in

solving the DLP is not negligible.
It is easy to see that both hβ(x, ·) and hβ(·, x) are per-

mutations for every x ∈ Zq and β ∈ Gp. Thus, the following
theorem is immediately lead from Lemma 4 and Theorem 2.

Theorem 3: A strongly CR family of hash functions is
constructed if the DLP is weakly intractable. �

6. Second-Preimage Resistance

In this section, it is mentioned that similar results can be
obtained for second-preimage resistance.

Let h : D → R be a hash function such that, for every
n ∈ N and x ∈ D ∩ {0, 1}�D(n), h(x) ∈ R ∩ {0, 1}�R(n) and
�R(n) < �D(n). Both �D(n) and �R(n) are polynomials in n.
Let Dn = D ∩ {0, 1}�D(n) and Rn = R ∩ {0, 1}�R(n).

A hash function h is called weakly second-preimage
resistant (2nd-PR) if, for a given x ∈ D, the probability of
failure to find another input x′ such that h(x) = h(x′) is not
negligible for every efficient algorithm.

Definition 4: A hash function h is called weakly 2nd-PR if

• there exists a probabilistic polynomial-time algorithm
Dh which, with an input 1n, outputs x ∈ Dn,

• there exists a deterministic polynomial-time algorithm
Mh which, with an input x ∈ Dn, outputs h(x), and

• there exists some polynomial p(n) such that, for every
probabilistic polynomial-time algorithm Fh and every
sufficiently large n,

∑
x∈Dn

Pr[Dh(1n) = x] Pr[Fh(x) fails] ≥ 1
p(n)
,

where “Fh(x) fails” means that it fails to find another
preimage in Dn and the probability is taken over the
coin tosses of Dh and Fh. �

A hash function h is called strongly 2nd-PR if the prob-
ability of success in finding another preimage is negligible
for every efficient algorithm.

Definition 5: A hash function h is called strongly 2nd-PR
if

• there exist a probabilistic polynomial-time algorithm
Dh and a deterministic polynomial-time algorithm Mh

as stated in Definition 4, and
• for every polynomial q(n), every probabilistic poly-

nomial-time algorithm Fh and every sufficiently large
n,

∑
x∈Dn

Pr[Dh(1n) = x] Pr[Fh(x) succeeds] <
1

q(n)
,

where “Fh(x) succeeds” means that it succeeds in find-
ing another preimage in Dn and the probability is taken
over the coin tosses of Dh and Fh. �

The proofs of the following theorems are omitted be-
cause they are similar to the ones for CR.
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Theorem 4: If there exists a strongly 2nd-PR hash func-
tion, then there exists a weakly 2nd-PR hash function which
is not strongly 2nd-PR. �

Theorem 5: A strongly 2nd-PR hash function is able to be
constructed from any weakly 2nd-PR hash function

h :
⋃
n∈N

Xn × Xn →
⋃
n∈N

Yn

such that, for every n ∈ N,

• for every x1, x2 ∈ Xn, h(x1, x2) ∈ Yn,
• |Xn| = |Yn| and h(x, ·) and h(·, x) are permutations for

every x ∈ Xn. �

7. Conclusion

In this article, for cryptographic unkeyed hash functions, a
definition of weak CR has been presented. Then, it has been
shown that there really exists a weakly CR family of hash
functions if there exists a CR family of hash functions. A
method has also been presented to construct a strongly CR
family of hash functions from a weakly CR one. With this
method, a strongly CR family of hash functions is obtained
if the discrete logarithm problem is only weakly intractable.
A definition of weak 2nd-PR has also been presented, and it
has been mentioned that similar results can be obtained for
weak 2nd-PR to the ones for CR.
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