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Key Agreement Protocols Resistant to a Denial-of-Service

Attack

Shouichi HIROSE† and Kanta MATSUURA††, Regular Members

SUMMARY In this manuscript, two key agreement proto-
cols which are resistant to a denial-of-service attack are con-
structed from a key agreement protocol in [9] provably secure
against passive and active attacks. The denial-of-service attack
considered is the resource-exhaustion attack on a responder. By
the resource-exhaustion attack, a malicious initiator executes a
key agreement protocol simultaneously as many times as possible
to exhaust the responder’s resources and to disturb executions of
it between honest initiators and the responder. The resources are
the storage and the CPU. The proposed protocols are the first
protocols resistant to both the storage-exhaustion attack and the
CPU-exhaustion attack. The techniques used in the construction
are stateless connection, weak key confirmation, and enforcement
of heavy computation. The stateless connection is effective to
enhancing the resistance to the storage-exhaustion attack. The
weak key confirmation and the enforcement of heavy computation
are effective to enhancing the resistance to the CPU-exhaustion
attack.
key words: key agreement protocol, denial-of-service (DoS) at-
tack, resource-exhaustion attack, Diffie-Hellman key agreement
protocol

1. Introduction

In using private key encryption for secure communi-
cation, it is necessary for the participants to share a
common key securely in advance with some key agree-
ment scheme. Key agreement schemes can be classified
into two types: non-interactive schemes and interactive
schemes. In this manuscript, the interactive schemes
are discussed, which are called the key agreement pro-
tocols (KAP’s).

A three-pass KAP was proposed in [9] which is
based on the Diffie-Hellman KAP [4]. This protocol is
provably secure against passive and active attacks in
the random oracle model [2] on the assumptions that
the Diffie-Hellman problem is intractable and that the
secret pieces of information of users are selected at ran-
dom and independently of each other. This protocol
also provides key confirmation, and the method for pro-
viding it is different from those of the other protocols
such as in [3], [5], [10], [12]. This protocol provides key
confirmation without using the shared key explicitly.
Each participant only shows the other participant that
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he can compute the shared key. This kind of key con-
firmation is called weak key confirmation.

In this manuscript, two KAP’s which are resistant
to a denial-of-service attack are constructed from the
KAP in [9]. The denial-of-service (DoS) attack consid-
ered is a resource-exhaustion attack on a responder. A
malicious initiator launches as many (bogus) requests
as possible one after another without establishing con-
nection with the target responder in order to exhaust
the responder’s resource and to disturb executions with
honest initiators. The resources are the storage and the
CPU. The amount of storage of a responder determines
the upper limit of the number of initiators who are able
to execute a KAP with the responder simultaneously.
The computation load on the CPU of a responder de-
termines the throughput. An anti-clogging token called
Cookie [11] is an efficient way to avoid DoS with IP-
address spoofing. However, when it is used in public-
key based authenticated protocols like corresponding
modes of IKE (the Internet Key Exchange) [8], the re-
sponder must perform expensive public-key based oper-
ation before he/she becomes sure of the initiator’s iden-
tity. By contrast, the proposed protocols are the first
authenticated protocols that are resistant both to the
storage-exhaustion attack and to the CPU-exhaustion
attack.

The techniques used in our transformation are
stateless connection [1], weak key confirmation, and en-
forcement of heavy computation. The stateless con-
nection is effective to enhancing the resistance to the
storage-exhaustion attack. It releases responders from
keeping connection states, which is kept by initiators.
Once released, the responders are confronted with a risk
of replay-flooding attack. In a comparison of the replay-
flooding attack against stateless protocols with the
storage-exhaustion attack against stateful ones, how-
ever, the stateless protocols are shown to provide a
better performance [1].

The weak key confirmation and the enforcement
of heavy computation are effective to enhancing the
resistance to the CPU-exhaustion attack. In the pro-
posed KAP’s, the most time-consuming computation is
a modular exponentiation. The weak key confirmation
enables a responder to compute the shared key, which
needs a modular exponentiation, only if the received
messages are valid.

The validity verification starts with a light step
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of hashing before main heavy computation on the re-
sponder’s side. Since the light step can tell whether
the initiator has really completed the exponentiation, a
malicious initiator will fear a “falling-together” night-
mare: he/she has to compute modular exponentiations
in order to make the responder compute modular ex-
ponentiations for checking the validity of the received
messages. The basic concept of this trick is “attackers
must pay a lot for the attack.” A pricing function by
Dwork and Naor [6] is based on the same concept. The
pricing function was, however, introduced for combat-
ting junk mails in one-pass protocols without authen-
tication mechanisms. On the other hand, we studied
three-pass protocols equipped with authentication.

The proposed KAP’s are still practical in com-
putation although they require the participants to ex-
change the connection state and additional authentica-
tors: they cost encryption/decryption of a private-key
cipher and one-way hashing, which are computationally
inexpensive in comparison with modular exponentia-
tions, the main cost of the prototype KAP. In addition,
depending on the operation mode, the required number
of modular exponentiations in effect can be reduced by
the use of simultaneous multiple exponentiation. The
proposed KAP’s also remain secure and one of them
almost inherits the provable security, except that they
become vulnerable to the replay attack.

This paper is constructed as follows. Section 2
first overviews the KAP in [9]. DoS-resistant KAP’s
are then proposed in Sect. 3, with a discussion on the
resistance. Section 4 includes the performance analy-
sis of the proposed protocols. Conclusion is given in
Sect. 5.

2. The Base Key Agreement Protocol

In this section, the KAP in [9] is reviewed, which is
the base of the DoS-resistant KAP’s proposed in the
next section. It is an authenticated KAP based on the
Diffie-Hellman KAP. In this manuscript, it is called the
base KAP.

Let p and q be large primes such that q | p − 1
and g ∈ GF(p) of order q. Let h : {0, 1}∗ → Zq be
a collision-free hash function. p, q, g, h are public and
shared among all of the users. Let si ∈ Zq be a secret
piece of information of the user i and vi = g−si mod p
be a public piece of information of the user i. Let Ii

be the ID of the user i. It is assumed that the users
know the public pieces of information of the other users
or that the public piece of information of each user is
contained in his ID.

The base KAP

1. The initiator A randomly selects kA ∈ Zq and com-
putes uA = g−kA mod p.

2. A sends uA, IA to B.
3. The responder B randomly selects kB ∈ Zq and

computes uB = g−kB mod p. B also selects rB ∈
Zq at random and computes xB = grB mod p. B
computes eB = h(xB, uB, uA) and wB = rB +
eBkB + e2

BsB mod q.
4. B sends uB, eB, wB, IB to A.
5. A computes zB = gwBueB

B v
e2

B

B mod p and checks if
eB = h(zB, uB, uA). If it does not hold, then A
terminates the execution. Otherwise, A randomly
selects rA ∈ Zq and computes xA = grA mod p.
Then, A computes eA = h(xA, uA, uB) and wA =
rA + eAkA + e2

AsA mod q.
6. A sends eA, wA to B.
7. A computes KA = u−kA

B mod p.

B computes zA = gwAueA

A v
e2

A

A mod p and checks if
eA = h(zA, uA, uB). If it does not hold, then B
terminates the execution. Otherwise, B computes
KB = u−kB

A mod p.

As is mentioned in Introduction, this protocol pro-
vides key confirmation by the novel method which is
different from those of the previous protocols. This
protocol provides it without using the shared key ex-
plicitly. Each participant only shows the other partici-
pant that he can compute the shared key. This kind of
key confirmation is called the weak key confirmation.

A signature scheme called the redundant signature
scheme is used for providing the weak key confirmation.
It is an extension of Schnorr’s signature scheme [13].
For example, (uB, eB, wB) is able to be regarded as a
signature for uA, which is used as a nonce. By checking
the validity of (uB, eB, wB), that is, by computing zB

and checking that eB = h(zB, uB, uA) in Step 5, A
is able to make sure that B received uA, that B sent
uB in response to the receipt of uA and that B knows
kB. Thus, A is able to make sure that B is able to
compute KB which is equal to KA. B does not use KB

in computing (uB, eB, wB).
This protocol is provably secure against passive

and active attacks in the random oracle model [2] on
the assumptions that the Diffie-Hellman problem is in-
tractable and that the secret pieces of information of
users are selected at random and independently of each
other [9]. All of these attacks are assumed to be known-
key attacks: it is provably secure even if all the pre-
viously shared keys are disclosed to the attacker. In
addition, this protocol provides forward secrecy: the
security against passive eavesdropping is proved on the
assumption that the attacker knows the secret pieces of
information of the participants.

3. Key Agreement Protocols Resistant to a
Denial-of-Service Attack

3.1 Denial-of-Service Attack

The DoS attack considered is the resource-exhaustion
attack on a responder by a malicious initiator. The re-
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sources are the storage and the CPU. KAP’s usually
require the storage which keeps connection states. The
amount of storage of a responder determines the up-
per limit of the number of initiators who are able to
execute a KAP with the responder simultaneously. On
the other hand, the computation load on the CPU of a
responder determines the throughput.

By the DoS attack, a malicious initiator tries to
disturb executions of the KAP between honest initia-
tors and a target responder. The malicious initiator
launches as many (bogus) requests as possible one af-
ter another without establishing connections with the
responder by using arbitrary ID’s. In the worst case,
the storage of the responder is exhausted and new re-
quests are refused. Even if the storage is not exhausted,
the throughput is degraded by the computation load on
the responder. Thus, it is preferable that the amount
of the storage and the computation load required by
each execution are as small as possible.

The base KAP is unfortunately vulnerable to the
DoS attack, regarding both the storage and the CPU. In
the DoS attack against the base KAP, a malicious ini-
tiator X uses arbitrary ID IX , and sends uX , IX to the
target responder B. Then, X receives uB, eB, wB, IB

from B and stops sending eX , wX or postpones it until
just before a certain expiration time. X repeats this
procedure as many times as possible. For each request
of this attack, B has to keep (IX , uX , kB, uB) until the
expiration or until he receives eX , wX . Moreover, he
has to compute two modular exponentiations in Step 3,
that is, uB = g−kB mod p and xB = grB mod p. B also
has to compute modular exponentiations in Step 6, that
is, zX = gwX ueX

X v
e2

X

X mod p, if he receives eX , wX to
check the validity of uX , eX , wX . On the other hand, X
need not compute any modular exponentiation during
the attack. X need not check the validity of uB, eB, wB

nor compute valid uX , eX , wX . His only purpose is to
make the responder be over-loaded, and he achieves it
with much less computation than B.

In the next subsection, the base KAP is trans-
formed to the protocols more resistant to the DoS at-
tack. The techniques used in the transformation are
the stateless connection [1], the weak key confirmation,
and the enforcement of heavy computation.

3.2 Protocols

Two DoS resistant protocols are presented in this sub-
section.

The first DoS resistant protocol can be constructed
by applying the idea of the stateless connection directly
to the base KAP. The protocol is shown below. Let
EB (DB) be an encryption (a decryption) function of
B. These are assumed to be the functions of some
symmetric key encryption scheme.

DoS-resistant KAP1

0. (Precomputation)
The initiator A randomly selects kA, rA ∈ Zq and
computes uA = g−kA mod p and xA = grA mod p.
The responder B randomly selects kB, rB ∈ Zq and
computes uB = g−kB mod p and xB = grB mod p.

1. A sends uA, IA to B.
2. B computes eB = h(xB , uB, uA) and wB = rB +

eBkB + e2
BsB mod q. B also computes cB =

EB(kB, xB).
3. B sends uB, eB, wB, cB, IB to A.
4. A computes zB = gwBueB

B v
e2

B

B mod p and checks
if eB = h(zB, uB, uA). If it does not hold, then
A terminates the execution. Otherwise, A com-
putes aA = h(zB, uA, uB). A also computes eA =
h(xA, uA, uB) and wA = rA+ eAkA+ e2

AsA mod q.
5. A sends uA, eA, wA, aA, uB, eB, cB, IA to B.
6. A computes KA = u−kA

B mod p.
B recovers (kB, xB) = DB(cB) and checks if aA =
h(xB , uA, uB) and eB = h(xB , uB, uA). If they do
not hold, then B terminates the execution. Oth-
erwise, B computes zA = gwAueA

A v
e2

A

A mod p and
checks if eA = h(zA, uA, uB). If it does not hold,
then B terminates the execution. Otherwise, B
computes KB = u−kB

A mod p.

This protocol is also shown in Fig. 1. It requires
the participants to pass the connection state and its au-
thenticators back and forth, which requires additional
bandwidth. The computational costs of the authen-
ticators are an encryption/decryption of a private-key
cipher and a few one-way hashings, which are compu-
tationally inexpensive.

Precisely speaking, for DoS-resistant KAP1, the
provable confidentiality of the shared key of the base
KAP is ruined in general, because kB is encrypted with
EB and the ciphertext is transformed over an insecure
channel. Furthermore, because kB is encrypted with
EB, the leak of the secret key of EB causes serious
damage. Thus, the management of the secret key is
very important for this protocol. An example of the
scheme for the key management is as follows: B keeps
the master keyK∗ securely and uses h(K∗, t) as a secret
key of EB, where h is a collision-free hash function and
t is a nonce. Although t need not be kept secret, it
should be changed every certain period of time.

DoS-resistant KAP2 in Fig. 2 solves the above
problem of KAP1. This protocol assumes that the re-
sponder B makes use of the same uB in many exe-
cutions. This assumption does not ruin the provable
security of the base KAP. In this case, B can use the
same kB to compute shared keys in many executions
of the protocol and he can keep kB in his own storage.
In this protocol, xB is used as a nonce for A instead of
uB, and eA = h(xA, uA, uB, xB).
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Step A B

0 kA, rA ∈R Zq kB, rB ∈R Zq

uA = g−kA mod p uB = g−kB mod p
xA = grA mod p xB = grB mod p

1 =⇒ (uA, IA) =⇒
2 eB = h(xB , uB , uA)

wB = rB + eBkB + e2
BsB mod q

cB = EB(kB , xB)
3 ⇐= (uB , eB, wB , cB, IB)⇐=
4 zB = gwB u

eB
B

v
e2

B
B

mod p
eB = h(zB, uB, uA) ?
aA = h(zB , uA, uB)
eA = h(xA, uA, uB)
wA = rA + eAkA + e2

AsA mod q
5 =⇒ (uA, eA, wA, aA, uB , eB , cB, IA) =⇒
6 KA = u

−kA
B mod p (kB , xB) = DB(cB)

aA = h(xB, uA, uB) ?
eB = h(xB , uB , uA) ?

zA = gwA u
eA
A v

e2
A

A mod p
eA = h(zA, uA, uB) ?

KB = u
−kB
A mod p

Fig. 1 DoS-resistant KAP1.

Step A B

0 kA, rA ∈R Zq (kB , )rB ∈R Zq

uA = g−kA mod p (uB = g−kB mod p)
xA = grA mod p xB = grB mod p

1 =⇒ (uA, IA) =⇒
2 eB = h(xB , uB , uA)

wB = rB + eBkB + e2
BsB mod q

cB = EB(uB , xB)
3 ⇐= (uB , eB, wB , cB, IB)⇐=
4 zB = gwB u

eB
B

v
e2

B
B

mod p
eB = h(zB, uB, uA) ?
aA = h(zB , uA, uB)
eA = h(xA, uA, uB , zB)
wA = rA + eAkA + e2

AsA mod q
5 =⇒ (uA, eA, wA, aA, uB , eB , cB, IA) =⇒
6 KA = u

−kA
B mod p (uB , xB) = DB(cB)

aA = h(xB, uA, uB) ?
eB = h(xB , uB , uA) ?

zA = gwA u
eA
A v

e2
A

A mod p
eA = h(zA, uA, uB, xB) ?

KB = u
−kB
A mod p

Fig. 2 DoS-resistant KAP2. B can use the same uB and kB in many executions: B
updates kB (and consequently uB) in not every execution of the protocol.

3.3 Resistance to the DoS Attack

In the following, resistance to the DoS attack is dis-
cussed only for the DoS-resistant KAP1. The discus-
sion for the DoS-resistant KAP2 is similar to it.

First, let us consider the storage-exhaustion at-
tack. By the stateless connection for the responder
B, the connection state (IA, uA, kB , uB) need not be
kept by B during an execution of the protocol, and
the storage-exhaustion attack has no effect on DoS-
resistant KAP1. eB and cB guarantee the integrity
and confidentiality of the state information. In Step 6

of DoS-resistant KAP1, B can confirm that uA and uB

are used together for computing the shared key if eB =
h(xB , uB, uA). B can recover kB by decrypting cB.
Since cB = EB(kB, xB) and eB = h(xB , uB, uA), xB

implies to B that −kB is the discrete logarithm of uB.
Hence, B need not check whether uB = g−kB mod p.

Next, let us consider the CPU-exhaustion at-
tack. The computation of modular exponentiations
are mainly considered, because it is the most time-
consuming computation. uB = g−kB mod p and xB =
grB mod p are able to be computed off-line; Step 0 can
be implemented as a precomputation step. The shared
key need be computed only if aA, eB and uA, eA, wA are
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valid because this protocol provides the weak key confir-
mation. Hence, B need not compute any modular expo-
nentiation in Step 2 though this protocol is based on the
Diffie-Hellman KAP. Furthermore, due to the enforce-
ment of heavy computation, B need not compute any
modular exponentiations on-line if aA �= h(xB , uA, uB)
or eB �= h(xB , uB, uA). This means that, in order to
make B compute zA = gwAueA

A v
e2

A

A mod p in Step 6,
the malicious initiator has to pay quite similar com-
putational cost in Step 4 for zB = gwBueB

B v
e2

B

B mod p
and aA = h(zB, uA, uB): heavy computation of zB is
required for providing the correct extra hash aA which
will be inexpensively checked by the responder at the
beginning of Step 6. This property somewhat discour-
ages the attackers from applying the CPU-exhaustion
attack. We shall recommend readers to compare this
cost on the attacker’s side with that on the responder’s,
which will be discussed later in the next section.

The KAP with stateless connection such as those
proposed in this manuscript is intrinsically vulnerable
to the replay-flooding attack. Looking at a compari-
son of the replay-flooding attack against stateless proto-
cols with the storage-exhaustion attack against stateful
ones, however, we can find that the stateless protocols
perform better [1].

4. Performance Analysis

In an actual network, one application may differ from
another in requirements on the efficiency of a key agree-
ment protocol. For example, a network-layer applica-
tion may probably have much more stringent require-
ments than an upper-layer application. This section
analyzes the computational costs of the proposed ver-
sions of KAP.

4.1 Basic Analysis

Since the main source of the computational cost is mod-
ular exponentiation, Step 4 and Step 6 have to be ana-
lyzed both in DoS-resistant KAP1 and in KAP2: specif-
ically, the computation of zB and zA, and the key es-
tablishment (KA on the initiator’s side and KB on the
responder’s side).

The cost of the key establishment is trivial: one
modular exponentiation on each side. The exponen-
tiation is carried out by using one-time exponent and
one-time base: none of (uA, uB, kA, kB) is a long-term
value. The rest of this section is devoted to the analysis
of the cost of zB and zA.

A simple implementation may pay three exponen-
tiations for computing zB. This, however, can be re-
duced to 2.17 exponentiations by the use of the si-
multaneous multiple exponentiation technique which
was attributed by ElGamal [7] to Shamir†. zB =
gwBv

e2
B

B ueB

B mod p, where the first two bases g and vB

Table 1 Comparison of the three modes on the responder’s
side. The cost is measured by the equivalent number of modu-
lar exponentiations; the cost in Step 4 on the initiator’s side is
2.17. After precomputation of simultaneous multiple exponentia-
tion, Light Mode requires additional storage of four precomputed
results, while Moderate Mode one.

Additional Additional Cost
Mode

storage precomputation in Step 6
Light Mode (uA, IA) 4 multiplications 1.25

Moderate Mode IA 1 multiplication 2.17
Simple Mode 0 0 3

are known in advance. Since we can use Shamir’s
trick to gwBv

e2
B

B mod p, the total cost is given by
(2/3)(2− (1/2)2) + 1 = 2.17 modular exponentiations.

On the responder’s side, fully conforming to the
DoS consideration, computation of zA costs three mod-
ular exponentiations.

4.2 Optional Saving

One approach for saving in computational cost on the
responder’s side is a DoS-resistance-dependent use of
three different modes.

The lightest mode requires the responder to keep
the state information carried by the message in Step 1.
This makes the protocol less resistant against the
storage-exhaustion attack by the storage of (uA, IA).
Since both uA and vA can be regarded as a pre-known
value in this case, the computation of zA in Step 6
can use the simultaneous multiple exponentiation for
three bases: g, uA, and vA. Thus the cost in Step 6
can be reduced to (2/3)(2 − (1/2)3) = 1.25 exponenti-
ations. It should be noted that the precomputation for
simultaneous multiple exponentiation here costs only
four modular multiplications. We refer to this mode as
“Light Mode.”

The second one requires the responder to keep the
state information IA. Since vA can be regarded as a
pre-known value in this case, the computation of zA in
Step 6 can use the simultaneous multiple exponentia-
tion for two bases: g and vA. Thus the cost in Step 6
can be reduced to (2/3)(2 − (1/2)2) + 1 = 2.17 ex-
ponentiations. It should be noted that the precom-
putation for simultaneous multiple exponentiation here
costs only one modular multiplication. We refer to this
mode as “Moderate Mode.”

The third one is the simple mode with the cost of
three exponentiations mentioned in the previous sub-
section. We refer to this mode as “Simple Mode.”

These three modes are summarized in Table 1. De-
pending on the real-time situation of the required DoS
care†† or traffic condition, the mode can be switched
from one to another.

†This algorithm is summarized in Appendix.
††Precomputed values require additional storage as state

information.
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4.3 DoS-Resistance Evaluation

The DoS-resistance of KAP1 is compared with that of
the other protocols with key confirmation. These pro-
tocols are
STS Station-to-station protocol [5] with

Schnorr’s signature scheme [13],
JV Protocol IIA of Just and Vaudenay [10],
BJM Protocol 2 of Blake-Wilson, Johnson and

Menezes [3],
LMQSV Protocol 3 of Law, Menezes, Qu, Solinas

and Vanstone [12].

BJM is provably secure in the random oracle model on
the assumptions that the Diffie-Hellman problem is in-
tractable and that there exists a secure MAC (Message
Authentication Code). On the other hand, STS, JV
and LMQSV are not provably secure. All protocols are
assumed to be executed in Light Mode.

Stateless connection is a general technique which is
applicable to other protocols. Thus, in this subsection,
only the CPU-exhaustion attack is considered, and the
number of modular exponentiations required to a re-
sponder under the CPU-exhaustion attack is evaluated.
First, the number of all modular exponentiations is con-
sidered. Then, the number of on-line modular exponen-
tiations is considered.

Three types of requests to a responder are con-
sidered in this subsection. One is a valid request, an-
other is an invalid request with a last message and the
other is an invalid request without a last message. The
last message, for example, for DoS-resistant KAP1 or
KAP2, is the one sent in Step 5 by an initiator. The
last two types of requests are from malicious initiators
who try to make the CPU-exhaustion attack. Malicious

Table 2 The number of modular exponentiations required to a responder for a good
request, a minor bad request and a major bad request. STS is the station-to-station
protocol [5] with Schnorr’s signature scheme [13], JV is Protocol IIA of Just and Vaude-
nay [10], BJM is Protocol 2 of Blake-Wilson, Johnson and Menezes [3], and LMQSV is
Protocol 3 of Law, Menezes, Qu, Solinas and Vanstone [12]. All protocols are in Light
Mode. For BJM, the computational load of MAC involved in it is not considered here.

request \ protocol KAP1 STS JV BJM LMQSV

good request 4.25 4.17 4 3 2.17
minor bad request 3.25 4.17 4 3 2.17
major bad request 2 3 3 3 2.17

Table 3 The lower bounds of the ratios(%) of bad requests to all requests for the
average number of modular exponentiations of KAP1 to be smaller than those of protocols
compared. These are evaluated based on Table 2. Good ∨ MinorBad represents each
request is a good request or a minor bad request. Good ∨ MajorBad represents each
request is a good request or a major bad request. “xxx” means that the average number
of modular exponentiations of KAP1 is always larger.

request \ protocol STS JV BJM LMQSV

Good ∨ MinorBad 8.0 25.0 xxx xxx
Good ∨ MajorBad 7.4 20.0 55.6 92.4

initiators are expected to tend to make invalid requests
without last messages, because they need not keep the
status of their past requests in mind and are able to
concentrate on launching as many new invalid requests
as possible. Thus, in this manuscript, an invalid re-
quest with a last message is called a minor bad request
and an invalid request without a last message is called
a major bad request. A valid request is called a good
request.

Table 2 shows the numbers of all modular expo-
nentiations for the three types of requests. For BJM,
the computational load of a MAC involved in it is not
considered here. KAP1 is the least efficient for a good
request. However, weak key confirmation of KAP1 re-
duces the number of exponentiations of KAP1 for a
bad request. For a minor bad request, KAP1 is more
efficient than STS and JV, but still less efficient than
BJM and LMQSV. For a major bad request, a respon-
der need not check the authenticity of an initiator, and
KAP1 is the most efficient protocol.

Notice that the enforcement of heavy computa-
tion of KAP1 makes minor bad requests less applica-
ble to it. The number of exponentiations for a mi-
nor bad request is equal to that for a major bad one
unless a responder receives valid aA, which requires a
(malicious) initiator to compute 1.25 exponentiations,
zB = gwBueB

B v
e2

B

B mod p.
Table 3 shows the lower bounds of the ratios of

bad requests to all requests for the average number of
modular exponentiations of KAP1 to be smaller than
those of the other protocols. These are evaluated based
on Table 2. Good ∨ MinorBad represents each request
is a good request or a minor bad request. Good ∨ Ma-
jorBad represents each request is a good request or a
major bad request. In the case of Good ∨ MajorBad,
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Table 4 The number of on-line modular exponentiations required to a responder for a
good request, a minor bad request and a major bad request. For BJM, the computational
load of MAC involved in it is not considered here.

request \ protocol KAP1 STS JV BJM LMQSV

good request 2.25 2.17 3 2 1.17
minor bad request 1 2.17 3 2 1.17

major bad request 0 1 2 2 1.17

Table 5 The lower bounds of the ratios(%) of bad requests to all requests for the
average number of on-line modular exponentiations of KAP1 to be smaller than those of
protocols compared. These are evaluated based on Table 4.

request \ protocol STS JV BJM LMQSV

Good ∨ MinorBad 6.4 0 20.0 86.4
Good ∨ MajorBad 7.4 0 11.1 48.0

KAP1 can be more efficient than the other protocols.
For example, if each request is a good or major bad
request and 7.4% or more of all requests are the lat-
ter one, then the average number of exponentiations
of KAP1 is smaller than that of STS. In the case of
Good ∨ MinorBad, the average number of exponentia-
tions of KAP1 is always larger than those of BJM and
LMQSV. Notice that the computational load of MAC
in BJM is not considered here and that LMQSV pro-
vides no provable security. The computational load of
BJM gets much larger if its MAC is implemented based
on discrete logarithm.

Table 4 shows the numbers of on-line modular ex-
ponentiations for the three types of requests. For a bad
request, KAP1 is the most efficient protocol in terms
of on-line computation. Especially, for a major bad re-
quest, KAP1 requires no on-line exponentiations to a
responder.

The average number of on-line modular exponenti-
ations of KAP1 can be smaller than those of the other
protocols when some of the requests are bad. Table 5
shows the lower bounds of the ratios of bad requests
to all requests for the average number of exponentia-
tions of KAP1 to be smaller than those of the other
protocols. These are evaluated based on Table 4.

5. Conclusion

Two key agreement protocols which are resistant to
a DoS attack have been proposed in this manuscript.
The denial-of-service attack considered is the resource-
exhaustion attack on a responder, where the resources
are the storage and the CPU. The proposed KAP’s
are the first protocols resistant both to the storage-
exhaustion attack and to the CPU-exhaustion attack.

Their DoS-resistance is evaluated with a com-
prehensive analysis on multiple modular exponentia-
tion. This may simplify DoS-related bandwidth-control
mechanisms (e.g. connection timeout for buffers) in dif-
ferent layers: without the evaluation, it would be too
hard to achieve balance between security and latency

demands.
Future work is to design a provably secure and

DoS-resistant key agreement protocol.
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Appendix: Simultaneous Multiple Exponenti-
ation

The followings are a brief description of a simultane-
ous multiple exponentiation algorithm, which was at-
tributed by ElGamal [7] to Shamir.

Input: group elements g0, g1, · · ·, gk−1 and non-
negative t-bit integers e0, e1, · · ·, ek−1.

Output: ge0
0 ge1

1 · · · gek−1
k−1 .

Assumption: g0, g1, · · ·, gk−1 are known in advance
and thus can be used in precomputation.

1. For i = 1 to
(
2k − 1

)
, Gi :=

k−1∏
j=0

g
ij

j where i =

(ik−1 · · · i0)2 (Precomputation).
2. Let Ii be the i-th column of an exponent array
(binary representation).

3. A := 1.
4. For i = 1 to t, A := A · A and then A := A ·

GIi . If Ii = 0 (and hence GIi = 1), the latter
multiplication is trivial.

5. Return(A).

Expected Cost:
{
2− (

1
2

)k
}

t non-trivial multiplica-
tions when the exponents are independently and
randomly generated. Assuming that the cost of
“one modular exponentiation” means the expected
number of non-trivial modular multiplications in
the case of “square and multiply” method, the
simultaneous multiple exponentiation reduces the
cost from k exponentiations down to{

2− (
1
2

)k
}

t

3
2 t

=
2
3

{
2−

(
1
2

)k
}

. (A· 1)
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