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Complexity of Boolean Functions Satisfying

the Propagation Criterion

SUMMARY Complexity of Boolean functions satisfying the
propagation criterion (PC), an extended notion of the perfect
nonlinearity, is discussed on several computation models. The
following topics are investigated: (i) relationships between the
unateness and the degree of the PC, (ii) the inversion complex-
ity of perfectly nonlinear Boolean functions, (iii) the formula
size of Boolean functions that satisfy the PC of degree 1, (iv) the
area-time-square complexity of VLSI circuits computing perfectly
nonlinear Boolean functions, (v) the OBDD size of perfectly non-
linear Boolean functions.

key words: Boolean function, propagation criterion, unateness,
inversion complexity, formula size, VLSIT complexity, OBDD size

1. Introduction

Nonlinearity is an important concept for the design of
conventional cryptosystems. The propagation criterion
(PC)[9], which is a generalized notion of the perfect
nonlinearity [7], is a nonlinearity criteria of Boolean
functions. The PC is a measure of randomness of the
differences of output pairs to those of input pairs. It
is one of the most important nonlinearity criteria be-
cause the differential cryptanalysis[1], which is one of
the successful attacks to conventional cryptosystems, uti-
lizes the bias of the distribution of the differences of
output pairs and those of input pairs.

The aim of this paper is to characterize the PC in
terms of the complexity of Boolean functions satisfying
the criterion.

First, some relationships are presented between the
unateness and the degree of the PC. It is shown that
every Boolean function with four or more variables sat-
isfying the PC of degree 1 is unate in at most two of
its variables and that there exist Boolean functions with
four or more variables that satisfy the PC of degree 1
and that are unate in two of their variables. It is also
shown that every Boolean function with four or more
variables satisfying the PC of degree 2 is not unate in
any one of its variables.

Second, the inversion complexity [6] of perfectly
nonlinear Boolean functions is discussed. The optimal
lower bound |logn|—1 is obtained for the perfectly non-
linear Boolean functions with n variables constructed by
the method of Maiorana[107.
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Third, it is mentioned that the formula size of every
Boolean function with n variables satisfying the PC of
degree 1 is proved to be at least n?/4 — 1 with the use
of the method of Krapchenko[5]. This lower bound is
nearly optimal for a perfectly nonlinear Boolean func-
tion.

Fourth, the area-time-square VLSI complexity[11]
of perfectly nonlinear Boolean functions with multi-
ple outputs is discussed. The main result of this topic
is that, for every perfectly nonlinear Boolean function
with n inputs and n/2 outputs, each of whose output
functions is constructed by the method of Maiorana, the
area-time-square complexity of any VLSI implementa-
tion requires Q(n?).

Finally, the size of ordered binary decision dia-
grams (OBDDs) [2] is considered. A relationship is pre-
sented between a combinatorial problem and the OBDD
size of perfectly nonlinear Boolean functions in a subset
of those each of whose output functions is constructed
by the method of Maiorana. It is also mentioned that,
for any variable ordering and for every perfectly non-
linear Boolean function with n inputs and n/2 outputs
constructed by the method of Nyberg[8], there exist
some output function of the perfectly nonlinear Boolean
function such that the OBDD size of the output function
is exponential in the number of its inputs.
puts.

Section 2 gives basic concepts and discusses
Boolean functions satisfying the PC. The unateness and
the inversion complexity are discussed in Sect.3. Sec-
tion 4 mentions the formula size. The area-time-square
complexity of VLSI circuits and the OBDD size are con-
sidered in Sect. 5 and Sect. 6, respectively.

2. Preliminaries
2.1 Walsh Transform and Boolean Functions

Let R and N denote the set of reals and the set of inte-
gers, respectively.

Definition 1: The Walsh transform of a real-valued
function f: {0,1}" — R is

W) = > fla=n,
ze{0,1}"

where z = (z1,...,%n), w = (W1,...,wy) € {0,1}" and
W T =wiTy D DWpTy. |
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For simplicity, (W(f))(w) is often denoted by F(w).
The inverse Walsh transform is

-1 1 w-z

f@) =W (F)@) = 5 Y Fw) (-1

wef{0,1}"

The Walsh transform can be represented in a ma-
trix form[10]. For f : {0,1}" — R, let f(i) de-
note f(xy,...,on) when o1 + 232 + -+ + 2,271 =
i Let [f] = [£(0), f(1),..., (2" — 1)] and [F] =
[F(0), F(1),...,F(2"—1)]. The Walsh transform is rep-
resented as

[F] = [f]Hm

where H,, denotes the Hadamard matrix of order n. H,,
is defined recursively by

Ho = [1],

H'n,*l
Hn—l

Hn—l
_Hn—l

H, is a 2™ x 2" symmetric non-singular matrix, and
its inverse is 27" H,,. The inverse Walsh transform is
represented as

[f] =2 "[F|Hy.

A Boolean function is a function of the form
f:{0,1}" — {0,1}™. Let By = {f|f:{0,1}" —
{0,1}™}. For simplicity, we denote B,, 1 as B,.

The Walsh transform can be applied to Boolean
functions in B,, when they are considered to be real-
valued functions. For the analysis of Boolean func-

tions, it is often convenient to work with f: {0,1}™ —

{~1,1}, where f(z) %' (~1)7©). The Walsh transform

of f is
| Flw)= Z fl@) (1) = Z (—1)f@®w=,

H, =

ze{0,1}™ ze{0,1}"™
Proposition 1: For every f ¢ B,, Z F2w) =
we{0,1}™
2277,‘ 0O

Definition 2: The autocorrelation function of a
Boolean function f € B, is Cf = {0,1}" — N such
that

Cr(z)= Y, f@f=e2),

z€{0,1}"™

where 2 @ z denotes (1 B z1,...,Tn B Zpn). O

Proposition 2 shows a relationship between the au-
tocorrelation function of f and the Walsh transform of
I
Proposition 2: For every f € B, Cf = W_l(ﬁz). O

2.2 The Propagation Criterion
For a set S, let |S| denote the number of elements in S.

For f € B, ,, and b € {0,1}", let f~1(b) = {z| f(=) =
b}.
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Definition 3: A Boolean function f € B, ., is bal-
anced if and only if |f~1(b)] = 2"~™ for every b €
{0,1}™. ]

For every {0, 1}-vector a, let W(a) be the Hamming
weight of a, that is, the number of 1’s in a.
Definition 4: f € B, ,, is said to satisfy the propaga-
tion criterion (PC) of degree £ if and only if f(z) @
f{z @ a) is balanced for every a € {0,1}" such that
1< W(a) L k. f is perfectly nonlinear if and only if f
satisfies the PC of degree n. |

Let PC,, (k) denote the set of Boolean functions
in By, , satisfying the PC of degree k. For simplicity,
PC,1(k) =PC,(k).

The condition of the above definition states that

Pr(f(z)® flz®a)=0b)=1/2™

for every a € {0,1}" such that 1 < W(a) < k and every
b€ {0,1}™. This means that, for f € PC,, ,,,(k), each of
the outputs of f changes with probability 1/2 if at most
any k£ of inputs change and that the changes of the out-
puts are independent of each other. This sensitivity of
the outputs to the inputs is desirable for cryptographic
transformations.

The following proposition directly follows from
the definition of the autocorrelation function and the
PC.

Proposition 3: Let f € B,. f € PC,, (k) if and only if
Ct(a) =0 foreverya € {0,1}" such that 1 < W(a) < k.
0O

For perfectly nonlinear Boolean functions, the fol-
lowing proposition was proved[7].

Proposition 4: Let f € B,,. f is perfectly nonlinear if

and only if ’F(w)‘ = 2"/2 for every w € {0,1}". O
Nyberg[8] presented a necessary and sufficient con-
dition for the perfect nonlinearity. Let V,, = {0,1}" —

{(0,...,0)}.

Proposition 5[8]: f = (fi,..., fm) € By, is perfectly

nonlinear if and only if, for every ¢ = (cy,...,cm) €
Vi,

c-f=afi®  Denfm
is perfectly nonlinear. ]
Proposition 6[81: If f = (f1,..., fm) € By, is per-
fectly nonlinear, then n is even and m < n/2. O

A method of construction of perfectly nonlinear
Boolean functions was presented by Maiorana[10]. Let
m € Bgr be any permutation and g € By be any
Boolean function. Let f € By be represented as

f(z,y) = 7(z) -y ® g(x),

where x = (z1,...,z1) and y = (y1,...,¥k). Then, f is
perfectly nonlinear.

Proposition 7: Let n = 2k. Let f = (f1,...,fm) €
B, and, for every ¢ such that 1 < ¢ < m, f; is repre-

sented as f;(z,y) = m(x) -y ® g:(x), where m; € By j, is



472

a permutation and g; € Bg. Then, f is perfectly non-
linear if and only if, for every ¢ = (c1,...,¢m) € Vi,
171 B -+ B ¢ Ty 18 & permutation.

Proof: Suppose that ¢ym1 & -+ B ¢ € Bry is a
permutation for every ¢ = (c1,...,6m) € V.

e flz,y) =c1fi(z,y) B ®emfm(z,y)
=(am(@) @ - D cmTm(z) Yy ®
(c11(z) @ -+ @ cmgm ().

Thus, ¢ f is perfectly nonlinear.

From Proposition 4, f is perfectly nonlinear if
and only if ¢- f is perfectly nonlinear for every ¢ =
(c1,.-yCm) € Vi If ¢+ f is perfectly nonlinear, then

Cf(m7y)@cf($,y@b)
= (am(z) @ D cpmm(z)) - b

is balanced for every b € V. Thus, c17m1 & -+ D Ty,

is a permutation for every ¢ = (c1,...,¢m) € V. This

completes the proof. a
Letn =2k and m < k. Let

Pn,m =
f=f1,-., fm) €PC, n(n), and,
for each ¢ such that 1 £ i < m,
7| filz,y) = mi(z) -y © gi(),
where m; € By is a permutation
and g; € Bg.

For simplicity, P, 1 = Py,.
3. Unateness and Inversion Complexity
3.1 Unateness

In this subsection, some relationships between the
unateness and the degree of the PC are presented. We
begin by defining the unate functions [4].

Definition 5: A Boolean function f(z1,...,z,) € By,
is said to be positive (negative) in variables z;,, ..., Z;,
if there exists a disjunctive or conjunctive expression of
finwhichz;,,...,z;, appears only in uncomplemented
(complemented) form. If f is positive (negative) in all
of its variables, then f is simply said to be positive (neg-

ative). O
Definition 6: A Boolean function f(z1,...,2,) € B,
is said to be unate in variables z;,,...,z;, if f is posi-

tive or negative in each one of z;,,...,z;, . If f is unate
in all of its variables, then f is simply said to be unate.
O

For example, f(z1, 22, x3) = 1 T2 V Tz T3 is unate
in x1 and z3 and not unate in x».

Figures 1 and 2 give all Boolean functions in
PC5(2) and PC3(2), respectively. From these figures, it
is observed that both PCy(2) and PC3(2) contain posi-
tive, negative and unate functions.
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x1 T2 x1 V x2
z1 T2 z1 Va2
T1Z2 T1 VI3
T1Ty 1V I

Fig. 1 Boolean functions in PCy(2).

T1Z2VT1T3 VI2T3
Ty Ty VIIx3 VIT2T3
Ty x2 VI X3V 22T3
T1Z2 VYV T1T3 VT2 T3
T1T2 V133V IT2T3
Ty T2 VTIT3 V T1 T2
T1xg Vo1 T3V T2T3
T1Z2 VZ1T3 V T2 T3

r1T2 VI3V T2 I3
T1T2 VT1 T3V T2T3
122 VX123V IzT3
T1xo VZT123V 23
T1Z273 VIT1x2T3
T1 T2 3 VT1 T2 T3
T1 T2 E3 V T1 T2 T3
T1 T2 T3V T1 T2 T3

Fig. 2 Boolean functions in PC3(2).

Suppose that f(zy,...,z,) € B, is unate in
x,. Then, for every (ai,...,a,-1) € {0, 1}"*1,
f(al, .. .,an_l,O) = 0 if f(al, ey O, 1) = 0 or
flag, - ,an-1,1) = 0 if f(ay,...,an_1,0) = 0. This
regularity does not seem compatible with the PC. In
the following, this conjecture is shown to be correct for
f € B,, when n = 4. Before showing the results, several
lemmas are presented.
Lemma 1[3]: Let w, z, y, z and m be integers such that
w=zr2y=z=20andm=0. Let w? +z2+42+22 =
2™ Then,

eforeven m, w = ¢ = y = z = 2(m2/2 o
w=2"?andx=y=2=0,

e foroddm,w=z=2m"92andy=2z=0. O

For z = (z1,...,z,) € {0,1}" and 7 such that
1£4L n, let <$>Z = (1171,... ,:ci).
Lemma 2: Letn > 2 and f € PC,(1). Then, for every
i such that 1 < ¢ < n, f(z1,...,3,) is positive in z; if

and only if £(0,...,0,1,0,...,0) = 2",

Since f € PC,(1),
 T—1,0) B f(z1,...,25-1,1) is balanced,that

Proof: Suppose that i = n.

fl@, .

is,

{(@n-1lflen=0 # fle.=1} = 2m2,

Thus,
E(0,...,0,1)
= Y f@n
ze{0,1}"

= > (Flon=o = flan=1)
(#)n—1e{0,13™71

= 2{{@)n—1| flon=0 = 0, flo,=1 = 1}|
_2|{<m>n—1 | f|zn=0 =1, f|wn=1 = O}[

=2""' —4{(z)n-1| flan=0 = 1, flz,—1 = O}
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Hence, £'(0,...,0,1) = 271 if and only if f(z) is pos-

itive in z,. The same argument can be applied to the

case where 1 <7< n — 1. O
The following lemma can be proved in the same

way as Lemma 2.

Lemma 3: Letn =2 and f € PC,(1). Then, for every

i such that 1 £ i < n, f(xy,...,2,) is negative in z; if

and only if F(0,...,0,1,0,...,0) = —2n—1, .
Lemma 4: Let f € B,,. Then, f € PC,, (k) if and only

if
Y )= Y )

a-w=0 a-w=1

for every a € {0,1}" such that 1 < W(a) < k

— 22‘71—1

Proof: This lemma is easily derived from Proposition
1, 2 and 3. a
Theorem 1: Letn = 4. If f € PC, (1), then f is unate
in at most two of its variables.
Proof: This theorem is derived from Lemma 2, 3 and
4. ]
The optimality of the above result can also be
proved.
Theorem 2: Let n = 4. There exist Boolean functions
in PC, (1) that are unate in two of their variables.
Proof: Suppose that f € PC,(1). Then, f is unate in
z1 and z9 if and only if

£2(1,0,0,...,0) = F2(0,1,0,...,0) = 22(»=1),
Since Zﬁ’z(w):22”_1 for every 4 such that 3 <4 <
n, w; =0
(1,0,0,...,0), (0,1,0,...,0),
wé (1,0,1,...,1), (0,1,1,...,1),
0,0,1,...,1), (1,1,1,...,1)
= F(w) =0.
Let

F(1,0,0,...,0) = Y,

F(1,0,1,...,1) = By,
F(0,0,1,...,1) = Fpo,

£(0,1,0,...,0) = F,
F(0,1,1,...,1) = Eyy,
EF(,1,1,...,1) = Fyy.
Since Z Fw) = Z F2(w)

w,=0 wi=1

=921 fori=1,2,
Fo20 +F()21 = F120 +F121 = FOZO + F120 = Fgl + Ffl
— 22(7’7.—1)'
From Lemma 1, there are following two cases:

C-1. ’F’lo‘ = ‘ﬁbl‘ = 271—1,

For C-1, let
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Then, { f} can be represented as
1] = 7] 2.
- (B ] )] o o],

Since b' b2 Db Bb* = (0,...,0), for every z € {0,1}",
an even number of [ (z), lbz( ), Iys () and Iy (z) are
equal to 1, and Ehe pthers are equal to —1. Thus, an
odd number of Fy, Fy, Iy and Fbl are equal to 27!
and the others are equal to —2"~! since f € B,,. Con-
versely, if an odd number of Fy, I, Fw and Fm are
equal to 2"~! and the others are equal to —2"!, then
f€PC,(1) and f(z) is unate in z; and z3.

The same argument as the above one can be appli-
cable to C-2. a

The following example gives a method of the con-
struction for Boolean functions that satisfy the PC of
degree 1 and that are unate in two of their variables.
Example 1: We construct f € PC4(1) which is nega-
tive in z1 and positive in 5. Let

[F] = [0,-8,8,0,0,0,0,0,0,0,0,0,8,0,0,8].

Then,
A1 1

M 24 [F} Ha
=[,1,-1,1,-1,1,-1,-1,—1,1,-1,-1,1,1, -1, 1].

Thus,

f(xla Zo, $3,$4)

=TZT122 VT T3Ls V z_lmgﬂ 4 ToT3Ly V ToX3Ty.

The method can be applicable to every n > 4. O
The following theorem shows the non-unateness of
the Boolean functions satisfying the PC of degree 2.
Theorem 3: Letn = 4. If f € PC,(2), then f is not
unate in any one of its variables.
Proof: Suppose that f € PC,(2) is unate in z;. Then,

F2(1,0,...,0) = 2%(=1),

If n = 4, then, for every f € PCy(2), f is known
to be perfectly nonlinear[9]. Thus, from Proposition 4,
F?(w) = 16 for every w € {0,1}*, which is a contradic-
tion.

Let n = 5. Let 4, j be any integers such that

2<i<j<n. Since f € PC,( ZF2 = 21
w;=0
Z F?(w) =221, and Z F?(w) = 22", Thus,

w;=0 wiBw;=1

w) + ZF2 —2F2(1,0,...,0)

w; =0 w,; =0
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- Y =0

wiBw;=1

From this equation, if F(w) # 0, then at most one of
wWay ... ,wp 180 or w=(1,0,...,0). Thus,

> )

w;Pw;=1
= F%(0,1,...
. g
+£2%(0,1,...,1,0,1,...,1)

+F%(1,1,...,1,0,1,...,1)

From Lemma 1, for every w € {0,1}" such that only
one of wy,...,wy, is 0 and F(w) # 0, F?(w) = 22n—2.
Since
Z Fz(w) = Z F2 () = 221
L wo1=0 wi=1
and
F2(1,0,...,0) = 221,

at most three of F2(w)’s are 22”2 for w € {0,1}" such
that only one of wsg,...,w, is 0. On the other hand,

since
Y )=

waBwz=1

Z ﬁvQ(w) — 2277,—17

wyqBws=1

at least four of F2(w)’s are 22"~2 for w € {0,1}" such
that only one of wy,...,w, is 0. This causes a contra-
diction. Thus, the theorem has been proved. |

3.2 Inversion Complexity

Even if a Boolean function is not unate in many of its
variables, combinational circuits computing the func-
tion do not necessarily require many —-gates. For ex-
ample, ©1---x, VT1 T, can be computed with one
—-gate, while it is not unate in any one of its variables.
* This subsection shows that, for every perfecily nonlin-
ear Boolean function in P,,, many —-gates are required
by every combinational circuit consisting of A-gates, V-
gates and —-gates that computes the function.

A combinational circuit is a logic circuit without
any loop. Let B be a set of Boolean functions. A B-
circuit is a combinational circuit consisting of the gates,
each of which computes a function in B.
Definition 7: The inversion complexity[6] of a
Boolean function f, I(f), is the smallest number of —-
gates necessary to compute f by {A, Vv, =}-circuits. O

For a = (a1,...,a,) € {0,1}" and b =
(b1,...,bn) € {0,1}", a < b if and only if a; < b,
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for every 7 such that 1 < ¢ < n. a < b if and only if
a < b and a; < b; for some j such that 1 < j < n.
Definition 8[6]: Let C = (al,...,a*) be a sequence
such that of € {0,1}" for 1 < ¢ < k and o/ < o/t
for1 <5< k—1. C is called a sign-variable chain of
length & of f € B,, if and only if

o J 1 ifiisodd,

f(o‘)“{o if ¢ is even.
for every i such that 1 <7 < k. O
Definition 9: alt(f) is the length of the longest sign-
variable chain of f. o

The inversion complexity I(f) is completely char-
acterized by alt(f).
Lemma 5[6]: For every f € B,

I(f):{ 0 ifalt(f)=0
[log, alt(f)] otherwise.
O

The following proposition is trivial from the defi-
nition of alt.
Proposition 8: For every f € B,, I(f) <
[logy(n + 1)]. =
Lemma 6: For every f € P,,, I(f) = |logyn] — 1.
Proof: Letn = 2k. f(z,y) = 7(z) -y & g(z), where
m € By be a permutation and g € By,

Since 7 is a permutation, for some v € {0,1}",

m(v) =(1,...,1) and

f,y) =& Sy @ g(v).
Let C = (@',...,a®)  such  that
o' = (v,1,...,1,0,...,0) € {0,1}*" for every i such

that 1 <i < k. If g(v) = 0, then

o ) 1 if¢is odd,
f(a)_{O if 7 is even.

and C is a sign-variable chain of f. It also can be shown
that there exists a sign-variable chain of length k+ 1 of

f if g(v) = 1. This completes the proof. O
Theorem 4: For every f € P,,, |logon| —1 < I(f) <
|log,(n+1)]. O

The following example shows that the bounds of
Theorem 4 are optimal.
Example 2: Letn = 2k. Let

f(‘r'E?y) = xlyl@“'@mkyky

gz, y) =1y B BTy P11 B - DT O L.
Then, f,g € P,. I(f) = |logyn| — 1 and I(g) =
[logy(n +1)]. 0

4. Formula Size

In this section, a lower bound on the formula size of
any Boolean function in PC,(1) is obtained with the
use of the method of Krapchenko [5].
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Let B be a set of Boolean functions. A B-formula
is a B-circuit with fan-out 1.
Definition 10: The formula size of f on B, Lg(f), is
the smallest number of gates of B-formulas computing
f- i
Some notations are defined in the following defini-
tion.
Definition 11[12]: Let Q,SC{0,1}" and f € B,. Let
H(Q,S) be the set of neighbors in (Q,S), i.e.,

H(Qv S) =
(g,9) € (Q,S) and there exists
some 7 such that 1 <7 < n,

(4,) q; 7 s; and ¢; = s; for every j
suchthat 1< j<nand j+#1
Let
H(Q,9)]?
Ko = Q9

’ Qlsl
K(f) = max{Kqs|QC f(1),SCf™0)}. O
Lemma 7[12]: For every Boolean function f, Ly(f) =
K(f) — 1, where U = By — {®,=}. O
Theorem 5: For every f € PC,(1), Ly(f) = n?/4—1.
Proof: Suppose that f € PC,(1). Then,

B (n2n—2)2
K(f) 2z Ki-11),5-1(0) = )@ — [ )

> n?/4.

This completes the proof. O

The lower bound in Theorem 5 is almost optimal
even for perfectly nonlinear Boolean functions. For the
perfectly nonlinear Boolean function f in Example 2,
Lu(f) £n?/2—1 when n is a power of 2.

For the same f, Lp,(f) = n — 1. On the formula
model, & and = is essential for the efficient computation
of the Boolean functions satisfying the PC.

5. VLSI Complexity

This section gives some results on the area-time-square
complexity of VLSI circuits computing f € P, p,.

We adopt the grid model for VLSI circuits[11]. In
the grid model, a rectangular grid is assumed. The spac-
ing of the grid lines is some fixed constant. Wires run
along grid lines. There are one or more layers and the
number of them is some fixed constant. Each layer has
at most one wire on every grid line. Circuit elements,
such as input/output pads, contacts, logic elements and
so on are located on grid points. All the circuits are as-
sumed to be convex and the area of a circuit is defined
to be that of the smallest rectangle whose sides are on
grid lines and which covers the circuit. The unit of time
is also assumed in this model. Each input/output ap-
pears on some input/output pad during a unit of time
and signals propagate on wires in a unit of time. The
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L . -

............. gridline = input pad
Fig. 3 A VLSI chip.

computation time of a circuit is defined to be the num-
ber of units of time between the first input and the last
output.
Lemma 8[11]: Let [ be any set of input variables and
C be a VLSI chip. Let A be the area of C' and A be the
spacing of grid lines of C. If no more than one third
of the inputs in I are fed into an input pad of C, then
a line of length at most VA + X can divide C into two
parts each of which includes between one third and two
thirds of the inputs in I. |
The proofs of the results make use of the infor-
mation flow argument[11]. Let C be a VLSI chip of
area A and time T computing some function, and let
L be a line on C satisfying the condition of the above
lemma (Fig.3). If some of the outputs on a side of L
depend on some of the inputs on the other side, then
some amount of information must be transferred across
L during the computation. If the amount of the infor-
mation is proved to be at least J, then (v A+ \)T > J.
Thus, AT? = Q(J?).
Theorem 6: Letn = 2k and f € P, ;. For every VLSI
circuit that computes f, AT? = Q(n?).
Proof: Let f = (f1,...,fk) € Pny such that, for
1<i <k,

filz,y) = mi(z) -y © gix),

where 7; = (m;1,. .
gi € By.

If some input pad accepts k/3 = n/6 or more inputs
iny=(y1,---,Yx), then T 2 n/6 and AT? = Q(n?).

Suppose that each input pad accept less than k/3 -
inputs in y. Then, Lemma 8 implies that the chip can
be split in two parts by a line of length at most v/ A+ A
so that each of the sides has between 1/3 and 2/3 of
the inputs in y = (y1,...,¥k), where A is the spacing of
grid lines. Without loss of generality, it can be assumed
that the left side of the chip contains at least half of the
outputs. Let r = [k/3]. Choose r of the inputs y on
the right side of the chip and r of the outputs on the
left side of the chip. Without loss of generality, we can
assume that they are y,...,¥y, and f1,..., fr.

ForceV,, let

., Wi k) € B i 1s a permutation and

c c c
Ty = (71-0,17 s 77T0,k) =am & DTy

Since, for every ¢ € V,., 7§ is a permutation,
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[{z |75, (x) = =7, (z) = 0} = 2.
Thus,
{z | Be(rs 1 (@) = - -+ = 5 () = 0)}]
é 2k—T(2T s 1) — 2]{: _ 2]@—7"

There exists a € {0,1}]C such that, for every ¢ € V,,
there exists some j such that 1 < j < r and Wg,j(a) +
Hence,

(ma(a),..., 7 (a)),..., (ma(a),.. .., 7rr(a))

are linearly independent.
Thus, for every pair of (y1,...,yr), (¥],...,¥.) €
{0,1}" such that (y1,...,4-) # (¥'1,---,¥s)s

(fl(a’aylv"-vy'r‘:b)w" 7yTab))
#(fl(aﬂy:llv--- 7f7‘(a7yll7"'7y1,~7b))5

where b € {0,1}"7".

From the above discussions, during the computa-
tion, at least r bits of information must be transferred
across the line splitting the chip. Hence, (v A+\)T = r
and AT? = Q(n?). 0

The proof of Theorem 6 can be extended to prove
the following corollary.

Corollary 1: Let n be even and ¢ be a constant such
that 0 < ¢ < 1/2. Let f € P, ). For every VLSI
circuit that computes f, AT? = Q((en)?). |
It is considered to be more realistic that in-
put/output pads are located on the border of a VLSI
chip. Under the restriction, the following theorem can
also be proved.
Theorem 7: Any VLSI circuit computing f € Py
that has all of its input/output pads on its border re-
quires AT? = Q(nm). O
The above result has some implication for the VLSI
implementation of cryptographic transformations. For
nonlinear elements in secure cryptographic transforma-
tions, their area-time-square VLSI complexity is ex-
pected to grow in proportion to the number of inputs
and that of the outputs.

7.f7‘(a7y17‘ ..
»y;ﬂb)u"'

6. OBDD Size

In this section, we consider the OBDD size of perfectly
nonlinear Boolean functions in a subset of Pom.

A binary decision diagram (BDD)[2] is an acyclic
directed graph that has one source node and two sink
nodes. Each of the nodes except two sink nodes is la-
beled by an input variable and has two outgoing edges
which are labeled by 0 and 1, respectively. Two sink
nodes are labeled by 0 and 1, respectively. Each in-
put variable appears at most once on each path from a
source node to a sink node.

A BDD represents a Boolean function
f(z1,...,2n) € By if, for every (by,...,b,) € {0,1}",

IEICE TRANS. FUNDAMENTALS, VOL. E78-A, NO. 4 APRIL 1995

the path from the source node along each edge outgo-
ing from a node labeled by z; and labeled by b; leads to
the sink node labeled by f(b1,...,b,). The BDD size
of a Boolean function is the smallest number of nodes
of BDD’s representing the function.

An ordered BDD (OBDD)[2] is a BDD in which
the order of the occurrence of variables are determined
by a total ordering of the variables. If a variable z; pre-
cedes a variable z; in the total ordering, then x; appears
before ; on every path that contains both z; and z;.

For every perfectly nonlinear Boolean function,
its outputs change independently of each other if any
change of inputs occurs. This independence induces a
conjecture that, for every perfectly nonlinear Boolean
function, there exist no variable ordering such that all
of the output functions can be represented by OBDD’s
of small size. We make some approaches to this conjec-
ture.

We consider f = (fi,...
every 7 such that 1 <7 < k,

filz,y) = (Pis™) -y ® gs(x),

where P; is a k x k {0, 1}-matrix and g; € By,. For every
(e1,...,¢ck) EVg, 1 PL® - &y Py, is non-singular. Let
PY . be the set of such functions.

"Let A be a matrix. Let rank(A) denote the rank
of A and let Aféy,...,%4][f1,- ., 5] denote an a X b ma-
trix whose (u, v)-element is (4,, j,)-element of A, where
i, # iq and j, # j, for every p,q and s,¢ such that
1<p<gZLaandl<s <t b, respectively.

The following theorem gives a relationship between
the OBDD size of a perfectly nonlinear Boolean func-
tion in P%,k and a combinatorial problem.

Theorem 8: Let f = (f1,..., fx) € P}, and, for each
7such that1 <1<k, ’

film,y) = (Px") -y & gi(x),
where P; is a k x k {0,1}-matrix and g; € By. Let

def

. fx) € Pag i, such that, for

min max
1<y, eifp g Sk 1SSk
1<G1, iy Sk

Tcmk(Pl[il, e ,i]’k/g]][jl, e ,j(k/Q]]).

Then, for any variable ordering, there exists some % such
that 1 <4 < k and the OBDD size of f; is Q(27()).
Proof: For each ¢ such that 1 < ¢ < k, fi(z,y) =
yPiz" & gi(x).

In a variable ordering of (x,y), suppose that x,,
precedes z,,, and y,, precedes y,, if 1 <p < g < k.

Suppose that z,,,, precedes Yo, ,,- Then, for
some d such that 1 < d < k, rank(P)) = r(f), where
Pé = Pd[ULk/QJ—&-lv o ,’Uk][’u,l, ceey U[k/ﬂ]. Thus,

{a]a=PpT be {0, 1}/ = 271,

Let 2’ = (24, - -
Let ¢’

’
< murk/zw) andy’ = (y”Lk/2J+1’ e ’y”’“)'

= g|murk/21+1:,..:zuk:0 . Then,
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f;z — y’Pé(x')T 1) gl(ml)
is a sub-function of f; constructed by substituting 0’s
for Toappymyrr o Tug and yy,, ... For the vari-
able ordering (xul,...,murk/zw,‘yvrk/zwl,...,yvk), the
OBDD size of f} is 2(277)). Thus, the OBDD size
of fg is Q2D if Tusry e PTECEAES Yoy o -

For the case where y,, ,, precedes ., .. , the the-

7y’ULk/2J .

orem can be proved in the same way. ad
We conjecture that »(f) = |k/4| for every f €
pM ..

A method of construction for perfectly nonlinear
Boolean functions in P%,k was proposed by Nyberg[8].
Let R be a k x k {0,1}-matrix which expresses a state
transition function of a linear feedback shift register of
length k& with a primitive feedback polynomial. Let
f={(f1,.-., fr) € Bag such that, for each 7 such that
1<k,

filz,y) = (B"'2T) -y © gs(),

where g; € By,. Then, f € P%’k.

The following theorem can be immediately derived
from the proof of the OBDD size of integer multiplica-
tion in Ref. [2].

Theorem 9: Suppose that f = (f1,...,fx) € P¥, is
constructed with the method of Nyberg. Then, for7any
variable ordering, there exists some ¢ such that1 <4 < k
and the OBDD size of f; is Q(2%/16). i

7. Conclusion

We have discussed the complexity of Boolean functions
satisfying the PC on several computation models. We
have considered the unateness, the inversion complexity,
the formula size, the area-time-square VLSI complexity
and the OBDD size. The proofs of the theorems on re-
lationships between the unateness and the PC show that
the Walsh transform is a powerful technique to analyze
properties of Boolean functions.

An open question is to obtain a good lower bound
on r(f) in Theorem 8. It is also left as a future work
to study the inversion complexity, the area-time-square
VLSI complexity, the OBDD size of Boolean functions
inPC, (k). Itis also interesting to investigate the com-
plexity of Boolean functions satisfying the other nonlin-
earity criteria.
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