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PAPER

Relationships among Nonlinearity Criteria of

Boolean Functions

SUMMARY For symmetric cryptosystems, their transforma-
tions should have nonlinear elements to be secure against vari-
ous attacks. Several nonlinearity criteria have been defined and
their properties have been made clear. This paper focuses on,
among these criteria, the propagation criterion (PC) and the strict
avalanche criterion (SAC), and makes a further investigation of
them. It discusses the sets of Boolean functions satisfying the
PC of higher degrees, the sets of those satisfying the SAC of
higher orders and their relationships. We give a necessary and
sufficient condition for an n-input Boolean function to satisfy
the PC with respect to a set of all but one or two elements in
{0,1}™ — {(0,...,0)}. From this condition, it follows that, for
every even n 2 2, an n-input Boolean function satisfies the PC
of degree n — 1 if and only if it satisfies the PC of degree n. We
also show a method that constructs, for any odd » > 3, n-input
Boolean functions that satisfy the PC with respect to a set of
all but one elements in {0,1}™ — {(0,...,0)}. This method is a
generalized version of a previous one. Concerned with the SAC
of higher orders, it is shown that the previously proved upper
bound of the nonlinear order of Boolean functions satisfying the
criterion is tight. The relationships are discussed between the set
of n-input Boolean functions satisfying the PC and the sets of
those satisfying the SAC.

key words:  Boolean functions, nonlinearity criteria, propaga-
tion criterion, strict avalanche criterion, symmetric cryptosystems,
cryptography

1. Introduction

For symmetric cryptosystems, their transformations
should be nonlinear to be secure against various attacks.
For example, the security of block ciphers, such as the
DES, which consist of iterative substitutions and per-
mutations, strongly depends on the substitutions which
are the only nonlinear elements of the ciphers. Several
nonlinearity criteria for Boolean functions have been
proposed and investigated.

This paper mainly focuses on the extended versions
of the strict avalanche criterion and the perfect non-
linearity and discusses single-output Boolean functions
satisfying them. The strict avalanche criterion (SAC)
was introduced as a design principle of good S boxes
by Webster and Tavares[11]. Forré[2] extended the no-
tion and defined the SAC of higher orders. The perfect
nonlinearity was defined by Meier and Staffelbach [4],
and Preneel, Leekwijk, Linden, Govaerts and Vande-
walle[6] extended it and defined the propagation crite-
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rion (PC) of higher degrees.

There exist no Boolean function with good proper-
ties for all nonlinearity criteria and useful for all crypto-
graphic applications. For example, perfectly nonlinear
Boolean functions are not balanced and their nonlinear
order is at most half of the number of inputs. It is es-
sential to examine the relationships among nonlinearity
criteria, for instance, the order of the SAC, the degree
of the PC, the nonlinear order, etc. in order to design
good Boolean functions for each application.

This paper presents an investigation of the PC of
higher degrees, the SAC of higher orders and their rela-
tionships. First, we discuss the PC. We give a necessary
and sufficient condition for an n-input Boolean function
to satisfy the PC with respect to a set of all but one or
two elements in {0,1}" — {(0,...,0)}. From this con-
dition, it follows that, for every even n > 2, an n-input
Boolean function satisfies the PC of degree n — 1 if and
only if it satisfies the PC of degree n. We also show
a method that constructs, for any odd n = 3, n-input
Boolean functions which satisfy the PC with respect to a
set of all but one elements in {0, 1}"—{(0,...,0)}. This
method is a generalized version of the one in Ref.[10].

Second, concerned with the SAC of higher orders,
we prove that the upper bound of the nonlinear order
of Boolean functions satisfying the criterion, which was
presented by Preneel, et al.[6], is tight.

Finally, we show that, for odd n > 3, the set of
n-input Boolean functions satisfying the PC of degree
n—1 is contained by the set of those satisfying the SAC
of order 1, while it is not the case for even n = 2. It
is also shown that the set of n-input Boolean functions
satisfying the PC of degree 2 does not include the set of
those satisfying the SAC of order n — 3.

Section 2 contains the definitions of nonlinearity
criteria. Section 3 is devoted to the discussion of prop-
erties of Boolean functions satisfying the PC. Section 4
presents the theorems on Boolean functions satisfying
the SAC. QOur results about the relationships between
the SAC and the PC are in Sect. 5. Section 6 is the con-
clusion with a comment for multiple-output Boolean
functions. ‘
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2. Preliminaries

2.1 Walsh Transform and Boolean Functions

Let R denote the set of reals.

Definition 1: The Walsh transform of a real-valued

function f: {0,1}" — R is

W)= Y fle)=1),

ze{0,1}"
where z = (z1,..., %), w = (w1,...,wy,) € {0,1}" and
w -z denotes the dot product wyz1 @ --- B wyz,. O

For simplicity, (W(f))(w) is often denoted by
F(w). The inverse Walsh transform is

fa)= WY@ =0 3 P10

we{0,1}"™

The Walsh transform can be represented in a ma-
trix form[9]. For f : {0,1}" — R, let f(i) de-
note f(z1,...,Z,) When x; + 232 + -++ + 2,271 =
i, Let [f] = [£(0),f(1),...,f(2" — 1)} and [F] =
[F(0), F(1),...,F(2™—1)]. The Walsh transform is rep-
resented as

[F] = [f]Hm

where H,, denotes the Hadamard matrix of order n. H,
is defined recursively by

HO == [1],
Hn—l H’n.—l

H, =
Hn—l —AIn—1

H, is a 2™ x 2" symmetric non-singular matrix, and
its inverse is 27" H,,. The inverse Walsh transform is
represented as

A Boolean function is a function of the form f :
{0,1}™ — {0,1}™. n is the number of inputs and m
is the number of outputs. In this paper, only the case
where m = 1 is considered. f : {0,1}" — {0,1} is
called n-input Boolean function or Boolean function
with n variables. Let B, = {f|f:{0,1}" — {0,1}}.

The Walsh transform can be applied to Boolean
functions when they considered to be real-valued func-
tions. For the analysis of Boolean functions, it is often
convenient to work with f : {0,1}" — {—1,1}, where
f(z) = (=1)7®)_ The Walsh transform of f is

ﬁ(w): Z f(ac)(—l)“"””: Z (_1)f(w)®w~m.
zc{0,1}" ze{0,1}"

Definition 2: The autocorrelation function of a
Boolean function f: {0,1}" — {0,1} is C; : {0,1}" —
N such that
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Cix)= Y. f@f@e2),

ze{0,1}"

where IN is the set of integers and x @ z denotes

1D 21,000, Ly D 2. O
Proposition 1: For every Boolean function f, Cy(z) =
(W (F2)(2). 0
Proposition 2: If f € B,,, then Z F2(w) = 22,
wef{0,11™

O
Definition 3: Let f(z1,...,2,) be a Boolean func-
tion.

jg]; = fler,. ., 2i-1,0,Ti01, ..., Tp) D
flz, o mic, L, @aga, -0, T )

is the Boolean difference of f with respect to a variable
Ti. O

2.2 Nonlinearity Criteria for Boolean Functions

For a set S, let |S| denote the number of elements in S.
Definition 4: A Boolean function f € B,, is balanced
if and only if |[{z | f(z) = 0} = [{z] f(z) = 1}| = 21,

O
Definition 5: The algebraic normal form of a Boolean
function f € B, is a type of representation of f such

that
@ Aliy,uin}Lin " Ligs
{i, ik} Ep(N)

where N = {1,...,n}, p(N) is the power set of N, and
Afiy,...in} € 10,1} for every {iy,... iz} € p(N). O
Any Boolean function can be uniquely represented
in an algebraic normal form, and any two different
Boolean functions cannot be represented in a same al-
gebraic normal form.
Definition 6: ' The nonlinear order of a Boolean func-
tion is the maximum order of the product terms in its
algebraic normal form. ]
For any a € {0,1}", let W{(a) denote the Hamming
weight of a, that is, the number of 1’s in a.
Definition 7: A Boolean function f € B, is said to
satisfy the strict avalanche criterion (SAC) if and only
if f(z)® f(z®a) is balanced for every a € {0,1}" such
that W(a) = 1. O
Let f(z1,...,2,) € B,. For any 4y,...,4,, such
that 1 < iy <+ <4, = n and by,..., by, € {0,1}, let
f |m¢1:b1,...,mim=bm€ B,._., denote the sub-function of
f obtained by substituting b1,...,b, for z;,,..
respectively.
Definition 8: A Boolean function f < B, is said
to satisfy the SAC of order m if and only if, for ev-
ery iy,...,4, such that 1 < ¢ < -+ < i, < n and
biy. oo bm € {0,1}, f |oy =b1,. 0y, =bm € Brm satisfies
the SAC. O

'7'Tim>
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It is obvious from the definition that the original
SAC of Definition 7 is equivalent to the SAC of order 0.
The value of a function satisfying the SAC depends on
all of its variables. Lloyd[3] proved that every Boolean
function satisfying the SAC of order m also satisfies the
SAC of order k(< m). Let SAC,,(m) denote the set of
f € B, satisfying the SAC of order m. It is apparent
from Definition 7 that every f € BqUB; does not satisfy
the SAC. SAC,,(n — 1) = SAC,,(n) = ¢ for every n.
Definition 9[4]: A Boolean function f € B, is per-
fectly nonlinear if and only if f(z)® f(z®a) is balanced
for every a € {0,1}" such that 1 < W(a) < n. O

Meier and Staffelbach [4] proved that the set of per-
fectly nonlinear Boolean functions coincides with the
set of Boolean bent functions defined by Rothaus|8].
Definition 10: Let f € B,,. f is said to be a bent func-

tion if and only if ‘ﬁ‘(w)‘ = 27/2 for every w € {0,1}".
O

Preneel, et al.[6] extended the notion of the perfect
nonlinearity and define the propagation criterion.
Definition 11: A Boolean function f € B,, is said to
satisfy the propagation criterion (PC) of degree k if and
only if f(z) © f(z @ a) is balanced for every a € {0,1}"
such that 1 < W(a) < k. O

Let PC, (k) denote the set of Boolean functions
with n variables satisfying the PC of degree k. PC,(n)
is the set of perfectly nonlinear Boolean functions with
n variables. PC,, (1) = SAC,(0).

Definition 12: A Boolean function f € B,, is said to
satisfy the PC with respect to A C {0,1}" —{(0,...,0)}
if and only if f(z)@® f(z®a) is balanced for every a € A.

O

The PC is one of the most important nonlinearity
criteria because differential cryptanalysis[1] utilize the
bias of the distribution of the input differences and the
output differences. For example, a round-function hav-
ing an S box with large number of inputs satisfying the
PC with respect to a set A has no characteristics useful
for the differential cryptanalysis with respect to input
differences in A.

This paper discusses single-output Boolean func-
tions. This is just a commencement of the discussion
of multiple-output Boolean functions. Only some of
the results can be directly extended for multiple-output
Boolean functions. This matter is mentioned in Sect. 6

3. Boolean Functions Satisfying the PC of Higher
Degrees

3.1 Almost Perfectly Nonlinear Boolean Functions

In this section, we investigate the Boolean functions that
satisfy the PC with respect to the sets of all but a few ele-
ments in {0,1}" —{(0,...,0)}. These Boolean functions
may be called almost perfectly nonlinear functions.
The following theorem presents a necessary and
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sufficient condition for f € B, to satisfy the PC with
respect to a set of all but one elements in {0,1}" —
{(0,...,0)}.

For a = (ai,...,a,) € {0,1}", let dec(a) =
a1+ 2a9 + -+ 2”_1an.
Lemma 1: Let m = 0 be an integer. The integers
x,y = 0 satisfying the equation z? 4 y* = 2™ is,

o for even m, z = 2™/2 and y = 0, or z = 0 and
y:2m/2,

o for odd m, z =y = 2(m-1/2,

Proof: If one of x and y is 0, then m is even and the
other is 2%/2.

If we assume that z # 0 and y # 0, then, we can
represent = and y as

T = Zemqmv Y= 26y‘]ya

respectively, where e, = 0, e, = 0, and g, g, are
odd. Without loss of generality, it can be assumed that
ey = e; = 0. Thus,

22633 qu + 22ey qy2 — 2m
QwQ + 22(ey—ez)qy2 — 2m72ez'

Since g, +2%*v¢=) g2 > 2, m—2e, > 1, which implies
ey — eg = 0. Thus,

qu 4 qy2 — 2m72em.

Since g,%+¢,? is a multiple of 2 but not of 4, m —2e, =
1. Hence, e, =€, = (m —1)/2 and ¢, = g, = 1. This
implies m is odd and ¢ =y = 2(m—1)/2,

The lemma has been proved. o
Theorem 1: Let b € {0,1}" — {(0,...,0)} and A =
{0,1}" = {b,(0,...,0)}. f € B, satisfies the PC with
respect to A if and only if,

o forevenn = 2, ‘ﬁ(w)’ = 2"/2 foreveryw € {0,1}",

e for odd n = 3,

. 2(n+1)/2 ifb.w=0

‘F(w)‘_{ 0 ifh-w=1,
or

R 2(n+1)/2 fp.w =1

F(“’)‘_{ 0 ifb-w=0.

Proof: Let v; be the i-th column of the Hadamard ma-
trix H,, for 0 < ¢ < 2™ — 1. From the definition of the
autocorrelation function, it is clear that f € B,, satis-
fies the PC with respect to A if and only if C¢(a) = 0
for every a € A. Hence, from Proposition 1, for every
a€A

[Fﬂ Vdee(a) = 0-
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Since the rank of H,, is 2", [Fz} is able to be repre-
sented as

{ﬁz] = CoUp + Cruy,
where
up = (V0" + Vgee(r) ") /2,
= (V0" = Vaee) V) /2

voT and vgeqp) " are the transposes of vy and Vdec(p)» Te-

spectively, and co, ¢1 are some integers. ug, u; € {0, 1}2n
and, for every w € {0,1}", the dec(w)-th elements of ug
and u; are 1 and 0, respectively, if and only if b-w = 0.

Let 'ﬁ‘(w)} = ﬁ‘o for every w such that b-w = 0,

and ‘ﬁ’(w)‘ = [ for every w such that b-w = 1. Since
Z F2(w) = 2%,
we{0,1}"
Eg + B2 =ont1,
Hence, from Lemma 1,
e When n is even, [, = F, = 27/2,

e When n is odd, Iy = 0, F} = 20v+1/2 or f) =

2(ntl)/2 fr — g,

The theorem has been proved. |

Tt directly follows from the definition of Boolean
bent functions that PC,(n) = ¢ for any odd n, and
that f € B, is perfectly nonlinear if and only if
‘F(w)‘ =22 for every w € {0,1}".

The next corollary presents a necessary and suffi-
cient condition for a Boolean function f € B, to bein
PCp(n—1).

Corollary 1: f € PC,(n— 1) if and only if,

o forevenn 22, f € PC,(n),
e for odd n = 3,

2(n—|—1)/2

’F(w)) _ { : it W(w) is even

if W(w) is odd,
or

o(nt1)/2

F(w)’ _ { 2 it W(w) is odd

if W(w) is even.

O
The first part of Corollary 1 says that, for every
even n = 2, PC,(n) = PC,(n — 1).
Theorem 2: Let by,b, € {0,1}" — {(0,...,0)} such
that b; # b2, and A = {0,1}" — {(0,...,0), b1, b2}. For
every even n 2 2, f € B, satisfies the PC with respect
to A if and only if 'ﬁ‘(w)! = 22 for every w € {0,1}".
Proof: Since f € B, satisfies the PC with respect to A,
[FQ} can be represented as

L
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{Fﬂ = coug + c1uy + Ccoug,
where ug = vy7T,

u; = (v + Vdee(br) ) /2,

ug = (v + iUd.ec(bz)T)/z

For the above equation, it is easily proved that the value

of each element in [FQ} is represented as cg, cg + ¢y,

Co + c2, Or ¢y + ¢1 + co, and that the number of el-
ements in pz} represented as each of them is 27/4.

Since Z F2(w) = 22",
wed{0,1}"

o+ (co+ 1) + (co+ e2) + (co + 1 + cp) = 272
co + (co+ ¢ +cg) =271,

Since both of ¢y and cg + ¢; + ¢3 are square numbers
and n is even, from Lemma 1, co = cg + ¢; + ¢g = 27,
And also, since

(co+c1) + (g + eg) = 271

and both of ¢y + ¢y and ¢y + ¢2 are square numbers,
co+cp =co+cg=2". A

Thus, for every w € {0,1}", F?(w) = 27, and the
theorem has been proved. |
Corollary 2: Let n = 2 be even and A C{0,1}" —
{(0,...,0)} such that |A| = 2" — 3. If f € B,, satisfies
the PC with respect to A, then f € PC,(n). m

Seberry, et al.[10] presented a method that, for ev-
ery even n = 2, generates balanced Boolean functions in
B,, satisfying the PC with respect to a set of all but three
elements in {0,1}" — {(0,...,0)}. The above corollary
shows that their construction is optimal in the sense that
the Boolean functions satisfying the PC with respect to
a set of all but two elements in {0,1}" —{(0,...,0)} are
in PC,,(n), because the perfectly nonlinear functions are
not balanced.

3.2 A Construction Method of Boolean Functions Sat-
isfying the PC

It is obvious from the definition that, for every n,
PC,(1)2 --- 2PCp(n — 1) DPC,(n). For odd n, the
following theorem can be proved.
Theorem 3: For every odd n 2 3, PC,(k - 1) D
PC,(k) fork=2,...,n. O
Table 1 shows the number of functions in some
PC,(k)’s[6]. For even n, PC,(k)’s do not necessarily
have the property in Theorem 3. For example, when
Theorem 3 can be directly derived from the discus-
sion in Ref.[10]. Seberry, et al.[10] presented a method
that, for any odd m = 3, generates balanced Boolean
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functions satisfying the PC with respect to a set of all
but one elements in {0,1}" — {(0,...,0)}.

We propose a method that, for any odd n = 3, gen-
erates Boolean functions satisfying the PC with respect
to a set of all but one elements in {0,1}" —{(0,...,0)}.
Our method is a generalized version of theirs. By a
simple observation of Theorem 1 and our method, it is
easily verified that one can construct all Boolean func-
tions that satisfy the PC with respect to a set of all but
one elements in {0,1}" — {(0,...,0)} from all Boolean
functions in PC,,_1(n — 1).

From Corollary 1 and our method, the following
theorems are easily derived.

Theorem 4: For every odd n = 3, |[PCp(n —1)| =
2|PCn_1(n— 1)| O
Theorem 5: For every odd n = 3, the number of bal-
anced functions in PCy,(n — 1) is [PC,—1(n —1)|. O

Our proposed method makes use of a property of
the Walsh transform of the Boolean functions.

Lemma 2: Foreveryn =2 2and 1 £ k < n, f €

PC, (k) if and only if [13‘2} is uniquely represented as a
linear combination of the dec(a)-th row vectors of H,,”,
where a € {0,1}" and W(a) =0 ork+1<W(a)<n
Proof: f € PC,(k) if and only if 27 > F*(w)
we{0,1}™
(=1)*"® =0 for every a € {0,1}" such that 1 < W(a) <
k, which is equivalent to that, for every vgec(q) in Hp
such that 1 < W{(a) <k, [Fz
non-singular, the lemma follows.
The above lemma leads to the following.
Lemma 3: Leta € {0,1}" and W(a) = k. If[F'Q}
can be represented uniquely as a linear combination of
v and vgee(q), then f € PC,(k — 1) — PC (k) and f
satisfies the PC with respect to {0,1}" — {(0,...,0),a}.
O

j| Vdec(a) = O- Since H,, is

Boolean functions that are in PC,,(k—1) —PC,(k)
and that satisfy the PC with respect to a set of all but
one elements in {0,1}" — {(0,...,0)} are able to be
constructed with the following algorithm.

Algorithm 1:

1. Select some a € {0,1}" such that W(a) = k.
2. Let u = (v —vdec(a /2. uw-v; = 0 for every v; of

)
H,, such that j # 0,dec(a). Let Ly(w) = a1w1 @ - @
Anwy, then u = [L, ( ), La(1),..., La(2™ — 1))

Table 1  The number of functions in PCy (k).
n
2 3 4 5
11 81 64| 4,128 | 27,522,560
21 8|16 896 228,352
k| 3} — 0 896 10,752
41 - | — 896 1,792
50 -1 = — 0
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3. Let

2(nt+1)/2 if the dec(w)-th element

- _ of u equals to 1
F (“’)\ Yo if the dec(w)-th element

of u equals to 0,
2(n+1)/2 if the dec(w)-th element

B - of v equals to 0
G(w)‘ ] 0 if the dec(w)-th element

of u equals to 1.

The signs of non-zero elements in [F‘] and [G’] are
able to be determined so that f and g be Boolean func-
tions, where [ﬂ =2" [Zﬂ H,and [g]=27" [G’} H,.
Since each element of 27" [F] H, and 277" [é’} H,

must be 1 or —1 for f and g to be Boolean func-
tions, the following lemma implies that f and g are
Boolean functions if and only if the non-zero elements

f [F] /2v+1)/2 and {é} /2(+1)/2 represent Boolean
bent functions.
For a matrix M, let col(M,3) be the i-th column

of M. For a = (a1,...,a,) € {0,1}", let (a); =
(al,...,ai).
Lemma 4: For any a ¢ {0,1}" such that a #

(0,...,0), let Gp(a,0) and G, (a,1) be 2"~! x 2™ matri-
ces that are constructed by removing all dec(w)-th rows
of H,,, where a-w = 1 and a-w = 0, respectively. Then,

e for each column v of H,_1, G,(a,0) has two
columns that are equal to v, and G,(a,1) has v
and —wv,

e for every i such that 0 < ¢ < 2™ — 1,
col(Gn(a,0),7) = col(Gn(a, 1),1)
or

col(Gp(a,0),7) = —col(Gn(a, 1),1).

Proof: We prove the theorem by induction.
n =1, since Ho = [1] and

11
H = { 1 —1 ] ’
G1(1,0) = [1,1] and G4(1,1) =

proved forn = 1.
For the Case where a,, = 0: For ¢ =0, 1,

a.c) = Gn—1(<a>n~1,C) Gn_l((a>n_1,c)
Gn(a,c) [Gn_1<<a>n_1,c> —Gy((@hn1, )

For the Case where a,, = 1: For a = (0, ..

When

[1,—1]. The theorem is

.,0,1), since

anl Hn—l
H, = ,
[ anl —din—1 ]
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G’n(a,()) = [Hn—lyHn—lJ: G’n(a, 1) = [Hn—ly _Hn—l]-
For a # (0, 0,1), forc=0,1,
Gpla,c) =
[ Grn-1({@)n-1,0) Gn-1( a>n 1, ) }
Gn—1(<a>n717 1 > C) _Gn 1(<CL n— ) '

Since, for every j such that 0 < j < 271 — 1,
COl(Gn—1(<a>n~170)aj> = COZ(Gn—1(<a>n—la1)7j) or
COZ(Gn—1>(<a'>n—1a0)7j) = _COI(Gn*1(<a>n~17 1)7])5 for
c=0,1, Gy(a,c) is able to be transformed to

{ Gn-1({@)n-1,¢)  Gn-1({a)n_1,¢) }
Gn—1(<a>n—17c) —Gn¥1(<a>n_1,c)

by permuting the columns of it.

Hence, the theorem has been proved. O
Example 1: We construct two Boolean functions f, g €
PC3(1) — PC3(2).

First, we select a = (a1, a2,a3) = (0,1,1). Then
W(a) = 2, and dec(a) = 6. The 6-th column of Hy is
=[1,1,-1,—-1,-1,-1,1,1]*. Then,

=([1,1,1,1,1,1,1,1] —vT)/2
=[0,0,1,1,1,1,0,0].

For F(wl,wz,wg) and G(wl,wg,wg,) let

[ F(1),. ..

[é(o), G, ...,

(1) =10,0,4,4,4,-4,0,0],

é(7>:| = [41 47 07 07 07 07 47 _4}7

respectively, where the signs of the non-zero elements of
{F] and [é} are determined by the perfectly nonlinear
function h(z1,z2) = 71 A x3.

[2(0), h(1), A(2), A(3)] =
Then,

m —93 [F} Hy=[1,1,-1,1,1,—1,

[1,1,1,—1].

—1,-1],

[6] =272 {G} Hs =[1,1,1,-1,-1,-1,1,1],

and f is a balanced Boolean function.

[z, 20, 23) = T1xa V 2123 = To ® 7122 © T173.

9(%1, %2, T3) = T1T9T3 V 21TaT3 = T1T2 B T123.

From Table 2, for f € Bs, f(z) ® f(a & z) is
balanced except for ¢ = (0,1,1). When a = (0,1,1),
fla® )= f(z). Hence, f € PC3(1) — PC3(2).

For g € B3, g(z) @ g(a ® z) is balanced except for
a=(0,1,1). When a = (0,1,1), gla® z) = 1 & g(x).
Hence, g € PC3(1) — PC3(2). O

The following theorem exhibits a property of the
Boolean functions satisfying the PC with respect to a
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Table 2 f(z)® f(a® ) and g(z) © g(a @ z).
@)@ fz@a) [g(@)egleea) |

I (a1,a2,a5) |

(17 Oa 0) 2 @563 zo D x3

(0, 1, 0) 16z 18z

0,0, 1) z1 z1

(1, 1,0 z1 D x2 B T3 z1 @ w2 B T3
(1,0, 1) 1®z1 Pz Dy | 1Oz Das Das
©, 1, 1) 1 0

(1,1, D z2 @ x3 z2 P x3

set of all but one elements in {0,1}" — {(0,
is disadvantageous to cryptographic use.
Theorem 6: Let n > 3 be odd and b € {0,1}" —
{(0,...,0)}. If f € B, satisfies the PC with respect to
{0,1}" — {5,(0,...,0)}, then f(z) ® f(x®b) =0 or 1.
Proof: From Proposition 1 and Theorem 1,

S i@i@eb) = o)

z€{0,1}™

,0)} that

I

1 N
on [Fz] Udec(b) = +27,

[

4. Boolean Functions Satisfying the SAC of Higher
Orders

Preneel, et al.[6] discussed the relationship between the
SAC of higher order and the nonlinear order, and pre-
sented the theorem below.

Theorem 7[6]: Let f € B,,.

1. If f satisfies the SAC of order n — 2, then the non-
linear order of f is 2.

2. For each 0 £ m < n — 3, if f satisfies the SAC of
order m, then the nonlinear order of f is less than
n—m. O

We show that the upper bound in Theorem 7 is
tight,
Lemma 5:

f(ﬂ?l,‘. “ay

only if T € B,,_1 is balanced for every z;.
Ly
Proof: Let a = (1,0,...,0).

zn) € By, satisfies the SAC if and

Zn) ® f1P z1,22,...,20)
=T1(f(0,z2,...,2n) ® f(1,22,...,24))
Ve (f(1,ze,. .., 20) & f(0,22,...,2,))
= (@1 Va)(f0,z2,...,70) & f(1,22,...,2,))
= f(0,22,...,2,) ® f(1,22,...,2,).
Since f(x1,z2,...,2n) ® f(1 & x1,22,...,7,) does not

depend on z,, it is obvious from the above equation that
flx1, 22, .., 2,) @ f(1 ® m1,29,...,2,) is balanced if

d,
and only if~i = f(0,z2,...,2,) ® f(1,20,...,
dﬂ?l

f($17$27"'7

Tp) is

balanced.
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In the same way, it can be shown that, for every
a such that W(a) =1 and a; = 1, f(z) ® f(x ® a) is

balanced if and only if - is balanced. a
-

Lemma 6[6]: Letn > 2 and f(z1,...,2n) € Bn. If
the nonlinear order of f is 2, then for each m such that
0<m < n—2, f € SAC,(m) if and only if every
x; occurs in at least m + 1 second order terms of the
algebraic normal form. O

For ¢ = (z1,...,2,) € {0,1}", let ()} =
(@4, ...,xz;) forevery 4, j such that 1 <i < j < n.
Theorem 8: For each 0 < m < n — 3, there exists
f € B,, which satisfies the SAC of order m and whose
nonlinear order is exactly n —m — 1.
Proof: Let g, (x1,...,%,) = @ z;z; and

1<i<j<n

fn(QIl, ey

This proof demonstrates that f,, € SAC,,(m).

Let k be an integer such that 0 < k < min{n —
m — 1,m}. When we fix m of z;,...,z, constant,
without loss of generality, we can fix zq,...,2, and
Ty (m—k)+1s - - - » T CODSLANL,

We consider the following two case: (1) when at
least one of x1, ...,z are fixed 0, and (2) when k£ =0

mn) =1 Tp—m-1P Qn($17 . 7mn)-

or all of y,...,zy are fixed 1.
(1) Let(a,...,ax, Ggs1,---,am) € {0,1}" and at least
one of ay,...,a; are 0. Then,

Frlla)k, (@) s (@hm ™)

= g((a)k, (2) 5 o (@b )

Since ¢, € SAC,(n —2) and m < n — 3,
Falla)k, (@) 050, s (@) ) € SACh 1 (0).

2 fk=n—-—m-—1,

fﬂ( S <m>ﬁ—i—_}n+k7 (a)fnJrl)

k
=1®ae(1,...,1, <$>ﬁﬂn+ka <a>51+1)'
This shows
Fa(l- 1, (@)EE () i™) € SAC, 1 (0).

foL<k<n—m-—1,

fn( ety <$>Z—|_—1n+k, <a>icn+1)

k
k+1 k+1
= Thi1 Trme1 D gn(l,.. ., 1, (a:)n+m+k, {a)Et1)
Tht1' " Tn—m—1 @ qn—m(<w>n ’m+k) & b
ifl,...,1,ak41,-..,6m, contain
even number of I’s,
_ k+1
= Tht1l " Tn—m—1D (.Zn—m(<x>ntm+k)
Brpr1 D P Lp—mik D
ifl,...,1,ak41,--.,0, contain
odd number of 1’s,
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where b,c € {0,1}. Let gn—m(Tkt1, - s Tnomtr) =
Tht1 " Tpn—m—1 S Qn—m(xk—l-la s 7-’En—m+k) ® b. The
following argument shows that g,,_, satisfies the SAC
of order 0.

(i) When we check whether the Boolean difference of
Gn—m Wwith respect to each one of xgy1,...,Tn—m—1
is balanced, it suffices to check only with respect
to x4 because g,_,, is symmetric with respect to

Te+1s:+ -y Ln—m—1-

Adgn—m
dTg41

=Tk42 D---® Trn—m+k @D LTk+2 " Tn—m-—1.

For every bi,...,by_(miks+2) € {0,1}, if zpqe =
b1, oy, Tp—m—1 = bn—(m+k+2): then
dgn_m 1 n—m
dIk+1 (<b>n—(m+k+2)7 <$>n—m+k)
= Ty B e
D bl @

D Tn—m+k
2] bn—(m+k+2) Dby bn—(m+k+2)7

and

({(<b>111—(m+k+2)7 (@) i) |

dgn_m _
b 1 n—m =0
—dka ( >n—(m+k+2)7 <x>n—m+k) }’

= {0y, @270

B (1) sy (i) =1
Adgn—m

Lh41
(ii) When we check whether the Boolean difference of
gn—m With respect to each one of z,_,u,..., Tnm+k
is balanced, it suffices to check only with respect to
Lp—mtk-

Hence is balanced.

dgrn—m

dmn—m-{—k

& LTn—m+k—1

1s balanced.

a.m contain odd

For the case that 1,...,1, ag41,.- .,
——

number of 1’s, that
Fullye oy 1, @ (@)5FY) € SAC,_m(0)

can be shown in the same manner. O
5. Relationships Between the SAC and the PC

Forré[2] characterized the spectral property of the
Boolean functions satisfying the SAC of higher orders.
For 1 £ i < n, let ¢ € {0,1}", only of whose i-th
element is 1.

Lemma 7{2]: For every f € B, f € SAC,(1) if and
only if f € SAC,(0) and
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> Py (wed)(-1)* =0

for every 4,5 € {1,...,n} such that i # j. m

Rothaus [8] presented a few methods for construct-
ing Boolean bent functions. One of them gives Boolean
bent functions of the form

m
flz, .. zn) = @wiazmﬂ & g(x1, .y ),

i=1

where n = 2m and ¢ is an arbitrary m-input Boolean
function.

The following theorem shows that all the Boolean
functions with odd number of inputs satisfying the PC
of the maximum degree satisfy the SAC of order 1, while
the Boolean functions with even number of inputs satis-
fying it necessarily not. The latter case is proved by us-
ing Boolean bent functions constructed with Rothaus’s
method.

Theorem 9:
e For every even n > 2, PC,(n) = PC,(n—1) ¢
SAC,(1).

e For every odd n = 3, PC,(n — 1) S SAC,(1).

Proof: For the case where n is even: Let n = 2m and

m
flxe, .. @) = @miwm+i.
=1

Then f € PCn(n), and f|wn:1(1}1, ..
m—1
@ TiLm+i B Tm. Whenever z,, changes, the value
i=1
of f':l:n:l(ml) ..
SAC,(1).
For the case where n is odd: It is clear from the defi-
nition that g € SAC,(0) if ¢ € PC,(n —1). If n is
odd, then, for every g € PC,,(n — 1), either for every
w € {0,1}" whose Hamming weight is even or for every
w € {0,1}" whose Hamming weight is odd, G(w) = 0.
Hence, for every ¢’ € {0,1}" whose Hamming weight is
1, Gw)Gwa ) =0. O
It is obvious that SAC,,(n — 3) C PC,(1}, and it
is implicitly described in Ref.[6] that SAC,(n —2) C
PC,(n — 1). These results are optimal in the sense of
the theorem below.
Theorem 10: SAC,(n—3) € PC,(2) for every n > 3.
S Tp) = @
1<i<j<n,i<n—2
is sufficient to show that g, ¢ PC,(2) because g, €
SAC,(n — 3) from Lemma 6.

-7$n—1) =

.,Tn—1) also changes. Hence, f ¢

Proof: Let gn(lil, . TiLj. It

Since gn(z1,...,Zn) = Gn2(T1,. .., Tn_2) O

P zi(zay @ z4), for a = (0,...,0,1,1),
1<i<n—2 ,

(1, Tp) B gn(z1 ® ay,...,z, ®a,) = 0. Hence,

gn & PCL(2). 0
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6. Concluding Remarks

We discussed the PC of higher degrees, the SAC of
higher orders and their relationships.

The theorems and the corollaries in Sect.3.1 can
be easily extended for multiple-output Boolean func-
tions along the following definition and the propo-
sition, which are easily derived from Ref.[5]. Let
f:{0,1}" — {0,1}™ and AC {0,1}" — {(0,...,0)}.
Definition f is said to satisfy the PC with respect to
A if and only if, for every a € A, f(z)® f(z D a) is bal-
anced, that is, for every b € {0,1}", |[{z| f(z) ® f(z ®
a) =b}| =27™, O
Propoesition Let f = (fi,...,fm). [ satisfies the
PC with respect to A if and only if, for every ¢ =
(c1,..yem) € {0,1}" — {(0,---,0)}, ¢+ f = c1f1 ®
@ ey fm € B, satisfies the PC with respect to A. O

Most results in the other parts, however, cannot be
easily extended for multiple-output Boolean functions
because the correlation between outputs must be con-
sidered for them.

We will study tradeofls among more than two non-
linearity criteria and investigate methods for construct-
ing Boolean functions with desirable nonlinearity to de-
sign good symmetric cryptosystems.
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