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Propagation Characteristics of Boolean Functions

and Their Balancedness

SUMMARY This paper discusses Boolean functions satis-
fying the propagation criterion(PC) and their balancedness.
Firstly, we discuss Boolean functions with n variables that sat-
isfy the PC with respect to all but three elements in {0,1}" —
{(0,...,0)}. For even n > 4, a necessary and sufficient condition
is presented for Boolean functions with n variables to satisfy the
PC with respect to all but three elements in {0,1}™ —{(0,...,0)}.
From this condition, it is proved that all of these Boolean func-
tions are constructed from all perfectly nonlinear Boolean func-
tions with n—2 variables. For odd n = 3, it is shown that Boolean
functions with n variables satisfying the PC with respect to all
but three elements in {0,1}"™ — {(0,...,0)} satisfy the PC with
respect to all but one elements in it. Secondly, Boolean functions
satisfying the PC of degree n — 2 and their balancedness are con-
sidered. For even n = 4, it is proved that an upper bound on the
degree of the PC is n — 3 for balanced Boolean functions with n
variables. This bound is optimal for n = 4,6. It is also proved
that, for odd » = 3, balanced Boolean functions with n variables
satisfying the PC of degree n — 2 satisfy the PC with respect to
all but one elements in {0,1}™ — {(0,...,0)}.

key words: Boolean functions, nonlinearity criteria, propagation
criterion, balancedness, symmetric cryptosystems

1. Introduction

Cryptographic transformations should be nonlinear to
be secure against various attacks. Propagation crite-
rion(PC) is one of the nonlinearity criteria, which was
proposed by Preneel, Leekwijk, Linden, Govaerts and
Vandewalle[4]. It is an extended notion of perfect
nonlinearity, which was defined by Meier and Staffel-
bach[3].

The PC is a measure of randomness of the differ-
ence of outputs to the difference of inputs. It is one of
the most important nonlinearity criteria because the dif-
ferential cryptanalysis [ 1], which is one of the successful
attacks and which is applicable to symmetric cryptosys-
tems and one-way hash functions, utilizes the bias of
the distribution of the difference of outputs and the dif-
ference of inputs. It is valuable to investigate Boolean
functions that satisfy the PC for the systematic genera-
tion of cryptographically useful Boolean functions.

This paper discusses single-output Boolean func-
tions that satisfy the PC. A necessary condition for a
multiple-output Boolean function to satisfy the PC is
that each of its output functions satisfies the PC. The
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discussion in this paper is a commencement of the dis-
cussion of multiple-output Boolean functions that sat-
isfy the PC although it may not be directly applicable
to multiple-output Boolean functions.

Seberry, Zhang and Zheng[7] presented methods
for the construction of balanced Boolean functions sat-
isfying the PC of high degrees. For odd n = 3, they
proposed a method for constructing balanced Boolean
functions with n variables satisfying the PC with re-
spect to all but one elements in {0,1}" — {(0,...,0)}
and constructed balanced Boolean functions satisfying
the PC of degree n — 1. For even n = 4, they proposed
a method for constructing balanced Boolean functions
with n variables satisfying the PC with respect to all but
three elements in {0,1}" — {(0,...,0)} and constructed
balanced Boolean functions satisfying the PC of degree
about 2n,/3.

For odd n = 3, a necessary and sufficient condition
was presented for Boolean functions with n variables to
satisfy the PC with respect to all but one elements in
{0,1}" = {(0,...,0)}[2]. It was also shown that all of
these Boolean functions were constructed from all per-
fectly nonlinear Boolean functions with n — 1 variables.
For even n = 4, the result in Ref.[7] is optimal in the
sense that Boolean functions with n variables satisfying
the PC with respect to all but less than three elements
in {0,1}" —{(0,...,0)} are perfectly nonlinear [2] and
that perfectly nonlinear Boolean functions are not bal-
anced.

This paper firstly discusses Boolean functions that
satisfy the PC with respect to all but three elements.
It presents, for even n = 4, a necessary and sufficient
condition for Boolean functions with n variables to sat-
isfy the PC with respect to all but three elements in
{0,1}" —{(0,...,0)}. From this condition, it is proved
that all of these Boolean functions are constructed from
all perfectly nonlinear Boolean functions with n — 2
variables. It is also shown, for odd n = 3, that Boolean
functions with n variables satisfying the PC with re-
spect to all but three elements in {0,1}" — {(0,...,0)}
satisfy the PC with respect to all but one elements in
{0,1}" = {(0,...,0)}.

Secondly, we consider Boolean functions satisfying
the PC of degree n—2 and their balancedness. For even
n > 4, we show that there exist no balanced Boolean
functions satisfying the PC of degree n — 2. This result
is optimal for n = 4,6. For odd n = 3, we prove that
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balanced Boolean functions with n variables satisfying
the PC of degree n — 2 satisfy the PC with respect to all
but one elements in {0,1}" — {(0,...,0)}.

Section 2 contains the definitions of nonlinear-
ity criteria.  Section 3 is devoted to the discus-
sion of Boolean functions with n variables satisfy-
ing the PC with respect to all but three elements in
{0,1}" — {(0,...,0)}. Section 4 presents the theorems
on Boolean functions with r variables satisfying the PC
of degree n — 2.

2. Preliminaries
2.1 Walsh Transform and Boolean Functions

Let R and N denote the set of reals and the set of inte-
gers, respectively.

Definition 1: The Walsh transform of a real-valued
function f : {0,1}" — R is

W)= > fla) (-1,

z€{0,1}"

where z = (21,...,2n), w = (w1,...,wy,) € {0,1}" and
w -z denotes the dot product wiz1 @ - - O wpy,. O

For simplicity, (W(f))(w) is often denoted by
F(w). The inverse Walsh transform is

@)= WY@ =5, Y Fl)(-1e
we{0,1}™

The Walsh transform can be represented in a ma-
trix form [6]. For [ : {0,1}" — R, let f(i) de-
note f(z1,...,%,) when zy + 292 + --- 4+ 2,271 =
i Let [f] = [£(0), f(1),...,f(2" — 1)] and [F] =
[F(0), F(1),...,F(2"—1)]. The Walsh transform is rep-
resented as

(F] = [f1Hn,

where H,, denotes the Hadamard matrix of order n. H,
18 defined recursively by

Hy = [1],
Hn-l Hn—l

H, =
H,1 —-H,,

H, is a 2™ x 2™ symmetric non-singular matrix, and
its inverse is 27" H,. The inverse Walsh transform is
represented as

[f] = 2_n[F]Hn'

A Boolean function is a function of the form f :
{0,1}"™ — {0,1}™. In this paper, only the case where
m = 1 is considered. f : {0,1}" — {0,1} is called
n-input Boolean function or Boolean function with n
variables. Let B, = {f|f:{0,1}" — {0,1}}.

The Walsh transform can be applied to Boolean
functions when they are considered to be real-valued
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functions. For the analysis of Boolean functions, it is
often convenient to work with f : {0,1}" — {-1,1},
where f(z) = (—1)7(®), The Walsh transform of f is

F(w> = Z f(aj)(—l)w'm = Z (_l)f(a:)@w-n:.
z€{0,1}" 2€{0,1}"

Definition 2: The autocorrelation function of a
Boolean function f € B, is Cy : {0,1}" — N such
that

Crm) = Y. f@)f@e-),

z€{0,1}"™
where x @ z denotes (1 ® 21, ..., Ty D 2,). ]
Proposition 1: For any Boolean function f, C(z) =
—1 -~
(W™ (F2)(2). 0
Proposition 2: For any f € B,,, Z F2(w) = 22,
we{0,1}™ -

2.2 Nonlinearity Criteria for Boolean Functions

For a set S, let |S| denote the number of elements in S.
Definition 3: A Boolean function f € B,, is balanced
if and only if [{z|f(z) = 0}| = [{=z|f(z) = 1}| = 2»~L.
' |
An affine Boolean function & € B,, is a Boolean func-
tion of the form of A(z1,...,2,) = Qa1 & -+ &
0nTy, where a; € {0,1} for 0 < ¢ < n. The distance
between two Boolean functions, f and g, with the same
number of variables, is d(f,g) = |{z|f(z) # g(z)}].
Definition 4: The nonlinearity of f € B, is
]’{Ielkl’l d(f, k), where A,, denotes the set of affine Boolean

functions in B,,. O
Proposition 3: The nonlinearity of f € B, is

min_ (2"7! £ F'(w)/2). |
we{0,1}1"

For a € {0,1}", let W(a) denote the Hamming
weight of a, that is, the number of I’s in a.
Definition 5[3]: A Boolean function f € B, is per-
JSectly nonlinear if and only if f(z)® f(z®a) is balanced
for every a € {0,1}" such that 1 < W(a) < n. O

Meier and Staffelbach [3] proved that the set of per-
fectly nonlinear Boolean functions coincides with the
set of Boolean bent functions defined by Rothaus[5].
f € B,, is defined to be a Boolean bent function if and

only if ‘F(w)‘ = 2"/2 for every w € {0,1}".
Proposition 4: f < B, is perfectly nonlinear if and
only if ‘F(w)‘ = 22 for every w € {0,1}. O
Preneel, et al.[4] extended the notion of the perfect
nonlinearity and defined the propagation criterion.

Definition 6: A Boolean function f € B,, is said to
satisfy the propagation criterion(PC) of degree k if and
only if f(z)® f(z@®a) is balanced for every a € {0,1}"
such that 1 < W(a) < k. O
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Let PC,(k) denote the set of Boolean functions
with n variables satisfying the propagation criterion
of degree k. PC,(n) is the set of perfectly nonlinear
Boolean functions with 7 variables.

Definition 7: A Boolean function f € B, is said
to satisfy the propagation criterion(PC) with respect to
AC{0,1}"* —{(0,...,0)} if and only if f(z) & f(z @ a)
is balanced for every a € A. a

3. Boolean Functions Satisfying the PC with Re-
spect to All But Three Elements

3.1 The Case Where the Number of Variables Is Even

Seberry, et al.[7] presented a method for constructing
balanced Boolean functions satisfying the PC with re-
spect to all but three elements in {0,1}" — {(0,...,0)}
for every even n 2= 4, and showed the following theorem.
Theorem 1[7]: Let n = 4 be even. For any pair of
bi,by € {0,1}"—{(0,...,0)} such that by # by, there ex-
ist balanced Boolean functions in B,, satisfying the PC
with respect to {0,1}" — {(0,...,0)} — {by, b2, b1 ® bo}.
O
The above theorem is optimal in the sense that, for
every even n > 4, Boolean functions in B,, which satisfy
the PC with respect to all but one or two elements in
{0,1}" — {(0,...,0)} are perfectly nonlinear[2]. Per-
fectly nonlinear Boolean functions are not balanced.
In this section, for even n = 4, a necessary and
sufficient condition is presented for balanced Boolean
functions in B,, satisfying the PC with respect to all but
three elements in {0,1}" — {(0,...,0)}. Before proving
the theorem, we present three simple lemmas.
Lemma 1[2]: Let z = y = 0 and m = 0 be integers.
z? + y? = 2™ if and only if

e when m is even, z = 2™/2, y = 0,
e when m is odd, z = y = 2(m=1)/2, 0

Lemma 2: There exist no positive integers =, y, z and
m such that 22 + y? 4+ 22 = 2™,
Proof: z, y, z can be represented as

x =2%q, y = 2%qy, z = 2%¢s,

where eq,es,e3 = 0, and q1,92,q93 are odd integers.
Without loss of generality, we may assume that 0 <
€1 S ey <es. If a2 L y? + 22 =2™, then

22€1q12 + 22€2q22 + 2263 q32 — 2m

q12 + 22(62—'61)(]22 + 22(63—51)(132 — 2771—261.
Since the left-hand side of the above equation is greater

than 3, m — 2e; = 2, which implies that the left-hand
side is even. Thus, e —e; = 0 and e3 — e; = 1. Then,

q12 + q22 — 2m—261 _ 22(63_61)(]32-

13

Since both of ¢; and ¢y are odd, q;% + g2? is a multiple
of 2 but not of 4. This contradicts that m —2e; = 2 and
2(ez —e1) 2 2. Hence, the lemma has been proved. O
Lemma 3: Let w, z, y, z and m be positive integers.
w? + 2?2 + y? + 22 = 2™ if and only if m is even and
w=gr=y=z= 2(m=2)/2

Proof: w, z, y, z can be represented as

w=2%q, x=2%q, y =2%q3, z = 2%qu,

where e;,...,e4 2 0, and ¢1,...,q4 are odd inte-
gers. Without loss of generality, we may assume that
0< e Ley<egZey. Since w? + 22 + 4% + 22 = 2™,

q12 _I_ 22(62—61)q22 + 22(63—61)q32 + 22(64—61)q42

— 2m—281

Since the left-hand side of the above equation is greater
than 4, m — 2eq = 2. Since the right-hand side is even,
€ — €1 = 0. Thl.lS,

q12 + q22 + 22(63—61)q32 + 22(64—El)q42 — 27’7’1—261.

Since both of ¢; and ¢y are odd, g12 + ¢2° is a multiple
of 2 but not of 4, which implies e3 —e; = e4 —e; =0
and q1% + g2 -+ g3° + qu® = 277,

For i = 1,2,3,4, g; can be represented as ¢; =
2r; + 1, where r; = 0 is an integer. Hence,

0+ g + g’ +gu? =277

4
A3 rilr +1) +1) = 2m2e
i=1
4
m— 2e; = 2 because Zri (r; +1)+1 is odd. Hence, m
i=1
iseven and w =z =y = z = 2(m=2)/2, O

The following theorem presents a necessary and

sufficient condition for f € B, to satisfy the PC with
respect to all but three elements in {0,1}" —{(0,...,0)}
for even n = 4.
Theorem 2: Letn > 4 be even. Let by, by, bs be differ-
ent elements in {0,1}" — {(0,...,0)}. f € B, satisfies
the PC with respect to {0,1}"—{(0,...,0)} —{b1, ba, b3}
if and only if

o fePC,(n),or

L bleBngBb?,:(O,,O) and
R 2n/2+1 ifbl-w:bz-wz
Fw)| = by =0
0 otherwise

or, for different 4, j, k € {1,2,3},

R 2n/2+1 ifbj-w=0b; - w=1,
F@ﬂ: by -w =0
0 otherwise.
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Proof: Let H,, = [vg,...,van_1]. Since f € B,, satisfies
the PC with respect to {0,1}"—{(0,...,0)}—~{b1,ba, b3},

[13‘2} can be represented as |F2| = coug + ¢y + cous +

caug, where up = voT, u; = (Vo + Vgeen,)) /2 for

i=1,2,3.

For the case where b; & by & bs # (0,...,0):
Z F2(w) = 22,

we{0,1}"

Since

co+(co+er+ep+ce3) =2
(co+ec1)+ (co+ea+es) =27
(co+c2)+ (cot e +eg) =2
(co+cs)+ (co+er +cg) =27F

For each of the eight terms in the left-hand sides of the
above four equations, it is easily proved that there ex-
ist 273 F2(y )’s that are represented as it. This implies
that all of the eight terms are square numbers, and, from
Lemma 1, are equal to 2. Thus, F?(w) = 2" for every
we {0,1}" and f € PC,(n).

For the case where by ©b; & b; = (0,...,0): It is easily
proved that there exist 2”2 F2(w)’s that are represented
as each one of ¢g +c¢; + ¢2 + ¢35, cg +¢1, ¢y + ¢ and
co + c3. Since

(co+ec1+ca+e3)+ (co+er)+
(co+ c2) + (co + ) = 22,

from Lemma 1, 2, 3,
(Case 1) co+c14cotes = cogtey = cot+ey = cotc3 = 27,

(Case 2) only one of ¢g + ¢ + ¢y + ¢3, co + €1, ¢ + o
and cg + c3 is 2712 and the others are 0.

For Case 1, f € PC,(n).

For Case 2, if cg + 1 + ¢g + ¢5 = 2*2, then
FZ( )_2n+2 whenb1 (U~b2 w—b3 w=20.If
o+ ¢; = 2"*2, then F2(w) = 22 when b; -w = 0 and
bj - w =1by -w =1 for different i, j, k.

Hence, the theorem has been proved. a

From the above theorem, for f € B,, that satis-
fies the PC with respect to all but three elements in
{0,1}™ — {(0,...,0)} and that is not perfectly non-
linear, the number of non-zero ﬁ(w)’s are 272, Let
bi,b2 € {0,1}" — {(0,...,0)} such that b1 £ by. Let
wo,...‘,w2n72‘1 € {0,1}™ such that by - w? = by - W,
by - w' = by - w’, and dec(w') < dec(w’) for 0 S
i< j<2"? -1 f ¢ B, satisfies the PC with re-
spect to {0,1}" — {(0,...,0)} — {by,bs,by @ by} and
is not perfectly nonhnear if and only if there exists

g € PCy_5(n — 2) such that F(wf)/27/2F1 = §(;) for
i:O,...,Q”_z—l, and F(w) = 0 if w # w'. This fact
is guaranteed by the following lemma and the definition
of the Boolean bent functions.

Lemma 4: Letn =2,b,c€ {0,1}" — {(0,...,0)} such
that b # ¢ and dy,d. € {0,1}. Let G,(b,¢c;ds,d.) be
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a 2" 2 x 2™ matrix that is constructed by removing all
dec(w)-th rows of H,,, where b-w # dy or ¢-w # d,.
Then, for each column v of H,,_,

o G,(b,c;0,0) has four columns that is equal to v,

Gr(b,c;dy, dc) has two columns that is equal to v
and two columns that is equal to —v for (dy, d..) #
(0,0).

Proof: This lemma can be proved by induction. O
The following corollary can be easily derived from
Theorem 2. This presents a spectral property of the bal-
anced Boolean functions satisfying the PC with respect
to all but three elements in {0,1}" — {(0,...,0)} for
every even n = 4.
Corollary 1: Let n > 4 be even. Let by, by, bs be
different elements in {0,1}" — {(0,...,0)}. f € B, i
balanced and satisfies the PC with respect to {0,1}" —
{(0, ce ,O)} — {bl,:bg, bg} if and only if by @ by @ b3 =
(0,...,0) and, for different 4, j,k € {1,2,3},

R 2n/2+1 1szw:bjw:1,
F(w)’ - b w =0
0 otherwise.

O

Corollary 2: Let » = 4 be even. The nonlinear-
ity of any balanced Boolean function in B,, satisfy-
ing the PC with respect to all but three elements in
{0,1}" = {(0,...,0)} is 271 — 2n/2,
Proof: This corollary directly follows from Proposi-
tion 3 and Theorem 2. a
The following corollary presents the relationship
between the number of balanced Boolean functions sat-
isfying the PC with respect to all but three elements
in {0,1}" —{(0,...,0)} and that of perfectly nonlinear
Boolean functions. The number of perfectly nonlinear
Boolean functions is an open question.
Corollary 3: Let n > 4 be even. The number of bal-
anced Boolean functions in B,, satisfying the PC with
respect to all but three elements in {0,1}" —{(0,...,0)}

is < 2 ;1 >|PCn_g(n—2)|. O
3.2 The Case Where The Number of Variables Is Odd

The following theorem shows that, for odd n > 3,
Boolean functions satisfy the PC with respect to all
but one elements in {0,1}" — {(0,...,0)} if they sat-
isfy the PC with respect to all but three elements in
{Ovl}n_{(ov"'ao)}'

Theorem 3: Let n > 3 be odd. Let by, by, by be dif-
ferent elements in {0,1}" — {(0,...,0)}. If f € B,, sat-
isfies the PC with respect to {0,1}" — {(0,...,0)} —
{b1,b2,b3}, then f satisfies the PC with respect to
{0,1}" — {(0,...,0)} — {b;} for i = 1,2, or 3.

Proof: Since f € B, satisfies the PC with respect to

{0,13™ = {(0,...,0)} — {b1,bs, b3}, [Fﬂ can be rep-
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resented as [Fz} = CoUg + C1U1 + Cous + cyus, where

up = vo", Ui = (Vo + Vgee(rs)) /2 fori=1,2,3.
For the case where by & b, ® b3 # (0,...,0):

Z FQ(LU) — 2271’

Since

we{0,1}"
co+ (co+e1+ ez +cg) = 2"
(co+ec1)+ (co+ea+cs) = 2",
(co+ca)+ (co+ ¢ +c3) = 2",
(Co + C3) + (CO +c1 4 Cz) = 2n+1.

For each of the eight terms in the left-hand sides of the
above four equations, it is easily proved that there exist
273 [r?(w)’s that are represented as it. From Lemma
1, it is easily derived that two of ¢1, ¢y, c3 are 0.

For the case where b; © b, ®bs = (0,...,0): It is easily
proved that there exist 22 F2(w)’s that are represented
as each one of cg + ¢y + ¢z +¢3, cg + 1, ¢g + ¢o and
co + ¢3. Since

(co+ci+ca+es)+(co+er)
+ (CO + 62) + (Co + 63) = 2n+2,
from Lemma [, 2, 3, two of ¢y + ¢q + ¢ca + ¢3, €5 + ¢4,

¢o + ¢z, and cg + c3 are 2771, and the others are 0. For
this case, it is also derived that two of ¢, ¢y, ¢35 are 0.

From the above discussion, [FQ can be represented
as [FZ} = ¢oug + c;u; for i = 1,2, or 3. Hence, the the-
orem has been proved. |

4. Balanced Boolean Functions Satisfying the PC of
Degree n—2

4.1 The Case Where n Is Even

In this section, it is proved that, for even n = 4, there
exist no n-input balanced Boolean functions satisfying
the PC of degree n — 2.

Firstly, we present a simple lemma.

Lemma 5: Let n > 2. Let H, = [vp,...,v2n1] and
a=(a,...,a,) € {0,1}". Then, for von_q_gn-1-: for
1=0,1,...,n—1 and vgn_1,

o if W(a) is even, then

— the dec(a)-th element of von_1 is 1,

— the dec(a)-th element of vgn_1_gn-1-s is 1 if
and only if a,,_; = 0,

e if W(a) is odd, then

— the dec(c)-th element of vyn_; is —1,

~ the dec(c)-th element of von_q_gn-1-s is 1 if
and only if ,,_; = 1.
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Proof: This lemma can be proved from the fact that,
for each ¢ such that 0 < ¢ < n—1, the dec(w)-th element
of vgn__gn-i—s is (—1)“1® BWn—i1@wn—ri21@Bwn apnd
that the dec(w)-th element of von_ 1 is (—1)w1®Own
where w = (wy,...,w,) € {0,1}". O
Theorem 4: For even n = 4, there exist no n-input bal-
anced Boolean functions that satisfy the PC of degree
n— 2.

Proof: We assume that f € PC,(n — 2) and f is bal-
anced. Let H, = [vg,...,van_1]. Then, from Propo-

sition 1, [ﬁz} Vdee(a) = 0 for every a € {0,1}" such

that 1 < W(a) < n — 2. Thus, [pz} is able to be rep-

resented as a linear combination of the transposes of
Vo, Vgn _1—9n—1,VUgn _q1_gn-2,... ,Ugn _9, Ugn _q. For every
1£:<n, let

Uy = (’UOT -+ 'U2n_1*2’n.—iT)/2,

and uo = voL, Uns1 = (voT +van_1T)/2. Then,
[Fﬂ = coUg + C1uy + -+ Cpp1Upg1.
Hence, from Lemma 5,
J FQ(O) =cp+c1 4+ epy,

o 29 =c¢co+cpifori=0,1,...,n—1,

n+1

n—1
o F2(> ) =cot Y eforj=0,1,...,n/2—
k=2j l=n+1-2j§

o F2(20 429 4+ 2%) = o+ i + Cney + Cn_y for
0<i<j<k<n—Ll
Since Z F2(w) = 2%,
we{0,1}"
2o+ 2" ey + k) = 227
o+ (co+ar +ooideppr) = SRS

F(0) = Z (=1)f®) = 0, because f is balanced.

zc{0,1}"
Hence, ¢y = 271,

FZ(Qn—l)+F2(2n—2)+p2(2n—2+2n—1)
(cot+ec1)+(cotez)+(co+es+-+cnp1)

=20+ (coter+ - +enpr)
= 2"t

i

From Lemma 1, 2,

locot+c1 =2"2, coteg =0, co+ca++cppr =0,

2. C0+C1 = 0, CQ+CQ = 2n—|—2’ Co+C3+--'+Cn+1 = O,
or
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Table 1 Bounds of the degree of the PC of balanced Boolean functions.
| number of variables [ 4 | 6 | 8 [ 10 [ 12 ] 14 ] 16 | 18 [ 20 [22 [ 24 | 26
upper bound 1135 7 91 131151719217 23
lower bound 113]4 5 7 8 9111 121 13]15] 16

3. cotar=0,co+ca=0,cotcz+ +eppy = 2712,

Since ¢g = 2711, these three cases are summarized as
follows:

(Case 1) One of ¢; and ey is —2"*1, the other is 27+,
and co+ecs+ -+ +epp1 =0,

(Case2) ¢1 = ¢y = —2"™, and co+c3 + -+ + Cppy =
T2,

For Case 1: Since ¢y + ¢cg + --- + Cn+1 = 0, for
F2(273) = ¢+ ¢, F2(2774) = ¢y+-c4, and F2(274
2073 422 L 9y — g ey - Cnt1, the same
argument as the above one shows that

(Case 1.1) One of ¢c3 and ¢4 is —27?, the other is 27+,
and co+c5+ -+ cpy1 =0,

(Case 1.2) ¢z =cy = —2""! and co+c5 + -+ + pyy =
ant2,

For Case 1.1, if n = 4, then ¢y + ¢s = 0 and
cs = —2""1 = —32. Thus, three of ¢y, ...,cs are —32,
which imp}ies that, from Lemma 5, there exists some w
such that F?(w) = —32. This is a contradiction.

If n = 6, then it can be shown that at least one of
¢s and cg is —27*!, which means that at least three of
€1,...,ce are —27+1

For Case 1.2, three of ¢y,...,cq is —271.

For Case 2: Since co +c3 + -+ + ¢pqq = 27F2,

(co+¢e3) + (co + ea) + (co +os e+ cng)

=2c0+ (co+es+---+cnya)
= 2m+3,

From Lemma 1, 2,

(Case 2.1) One of c5 and ¢, is —2"*!, the other is onTl,
and co +cs+ -+ cppq = 272,

(Case 2.2) c3 =c4 = 2™ andcg+cs +--- + Cni1 = 0.

For Case 2.1, three of ¢y,...,c, are —27+1,

For Case 2.2, when n = 4, ¢; = ¢; = —2""1 and,
since co +¢c5 = 0, ¢ = —2"+1, When n > 6, at least
one of ¢5 and ¢g is —27H1,

Hence, the theorem has been proved. O

Theorem 4 implies that n-input balanced Boolean
functions satisfy the PC of degree at most n — 3. As
for the lower bound, the following theorem has been
proved.

Theorem 5[7]: Let n = 4 be even. Suppose that
n = 3t + c, where ¢ = 0,1, or 2. Then there exist
balanced Boolean functions in B,, that satisfy the PC
of degree 2¢ — 1 when ¢ = 0,1 or 2t when ¢ = 2. O

From the above two theorems, the bounds are tight
for n = 4,6. Table 1 shows the bounds on the degree
of the PC of balanced Boolean functions.

4.2 The Case Where n Is Odd

In this section, it is shown that, for odd n > 3, every
balanced f € PC,(n — 2) satisfies the PC with respect
to all but one elements in {0,1}" — {(0,...,0)}.
Lemma 6: Let z,y,z > 0 be integers and m = 0 be
an even integer. z” 4 y® + 2% = 3. 2™ if and only if
=y =z=2m/2

Proof: z,y, z can be represented as
T =2q,y=2%q, z = 2%¢;,
where €1, ez, e3 2 0, and each of ¢, 42, q3 is 0 or odd.

(1) If we assume that y = z = 0, then 22 = 3. 2™,
which contradicts that = is an integer.

(ii) Suppose that = # 0, y # 0, z = 0. Then,

2%¢1g,2 4 22€20,2 — 3. 2™ Since, without loss of

generality, we can assume that e; = e; > 0,

q12 -+ 22(62781)q22 =3.9m 21

If e = eg, then 12 + g2 is a multiple of 2 but
not of 4. This implies that m — 2e; = 1, which
contradicts that m is even.

If e < eq, then the left-hand side is odd and
m — 2e; = 0. Thus, ;2 + 22(¢2=1)g,2 = 3 which
implies that 2(e; — eq) = 1. This contradicts that
ey and ey are integers.

(ii)

Suppose that none of z,y, z is 0. Without loss of
generality, we may assume that 0 < ey < ey < e3.
92e14,2 | 922,21 92,2 _ 3. gm
@+ 22(e2_e1)q22 i 22(ere1)q32 _3.9m—2e;
If we assume that e; # ey and e; # es, or

€1 = eg = eg, then the left-hand side is odd. This
implies that m — 2e; = 0 and

q12 + 22(62—61)(122 + 22(63‘61)q32 — 3

Since ¢1,¢2,93 = 1, e; = e; = e3 = m/2 and
g1 =¢=g3=1
If we assume that e; = e and e; # es, then
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q12 _|_q22 — 3_2m—261 _22(63—61)q32' Since q12+q22
is a multiple of 2 but not of 4, m — 2e; = 1 or
2(es — e1) = 1. This situation cannot occur be-
cause m is even.

Hence, the lemma has been proved. O
Theorem 6: For every odd n = 3, if f € PC,(n —2)
is balanced, then, for some b € {0,1}" such that
W) = n — 1, f satisfies the PC with respect to
{0,1}" — {(0,...,0)} — {b}.

Proof: We assume that f € PC,(n — 2) and f is bal-
anced. Then, [13‘2] is able to be represented as

[Fz} = CoUo + C1U1 + * -+ Cpy1Unid,
where for every 1 < i < n,
u; = (voT + Vgn_q_gn—i 1)/2,

Ug = ’UOT, and Upt1 = (UQT + U2n_1T)/2.
Hence, from Lemma 3,

L4 F2(0):CO+CI+"'+CTL+17
o F2(2 =cy+ e,y fori=0,1,....n—1,

n+1

n—1
. Fz(z2k):co+ Z gforj=0,1,...,n/2-1,
k=2j l=n+1-2;

o F2(20 + 27 +2%) = co 4 ¢ i + Coj + Cpy for
0<i<j<k<n-—1.

Since
Z ﬁ’2(w)=22” and F(O): Z (_1)f(w): 0,
we{0,1}™ ze{0,1}"

co+cy+--+cpy1 =0and co = 27T,
Since
F2(2n—1)+F2(2n—2)+ﬁv2(2n—2+2n~1)
= (co+e1)+(cot+ca)+ (co+ecs+- 4 cnp1)

=2+ (co+c1+- +cptr1)
— 271,+2

from Lemma 1, 2,

Legt+er=0,c0+c=2"" co+cs+- +eppr =
2n+1’

2. Co+C1=2n+1500+02=0,Co+63+~'-+cn+1:
2"+l or

3. coter = 2" cpbep = 27 egbeg b b epar =
0.

Since ¢g = 2711, these three cases are summarized as
follows:

(Case 1) One of ¢; and ¢y is —27T! the other is 0, and
co+cg 4+ eppg =27,
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(Case2) c; =co=co+c3+ -+ cpy1 =0.

For Case 1: When n = 3, ¢g + ¢35 + ¢4 = 2% and
(co+ c3) + (co + c4) = 25. Thus c3 = ¢4 = 0.

When n > 5, since co +c3 + -+ + cpp1 = 27,
for F2(273) = ¢y + c3, F2(2"*) = ¢y + c4, and
FP(2n=t 4 2m 8 4902 9n 1) = g o o Cnys

(co+cs) + (co+ca) +(co+es+ -+ cnin)
= 2co+ (cot ez 4+ enpr)
=3.2"7h

Thus, from Lemma 6, ¢z =c4 = cg+e5+---+c,1 =0,

For Case 2: When n = 3, (cg + ¢c3) + (co + cq) = 2%
Thus one of ¢z and ¢4 is —2% and the other is 0.
When n 2 5, since co +c3 + -+ + ey =0,

(co+cs)+(coteca)+(co+es+ -+ cnyr)

= 2co+ (co+ec3+ -+ cng1)
— 2n+2.

(Case 2.1) One of c3 and ¢4 is —2™*! and the other is 0,
and co+ex+ - +eppg =20

(CaseZ.2) 03264:CO+C5+"'+Cn+1=O.

From the above discussion, each of ci,...,¢ch11
is 0 or -2 and at least one of ci,...,cpy1 IS
—2"+1 Thus, only one of ¢y, ..., cpy1 is —27F since
FQ(O,...,O) =cg+cg+ - +Cn+1 = 0. Hence, the
theorem has been proved. O

The following theorem has been proved for
Boolean functions satisfying the PC with respect to all
but one elements in {0,1}" — {(0,...,0)}.

Theorem 7[2]: Let n = 3 odd and b € {0,1}" —
{(0,...,0)}. Balanced f € B, satisfies the PC with
respect to {0,1}" — {(0,...,0)} — {b} if and only if

) 9(n+1)/2
‘F(w)‘ =1
O

The following corollaries can be derived from the
above two theorems.
Corollary 4: For every odd n = 3, the number of
balanced Boolean functions in PC,(n — 2) is (n +
1)PCp1(n —1)]. a
Corollary 5: For every odd n» = 3, the nonlineari-

ties of balanced Boolean functions in PC,(n — 2) is
gn—1 _ 9(n-1)/2 O

ifb-w=0
ifb-w=1.

5. Conclusion

This paper has discussed Boolean functions satisfying
the PC and their balancedness.

Firstly, we have discussed Boolean functions with
n variables satisfying the PC with respect to all but
three elements in {0,1}" — {(0,...,0)}. For even n >
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4, a necessary and sufficient condition has been pre-
sented for Boolean functions with n variables to sat-
isfy the PC with respect to all but three elements in
{0,1}" — {(0,...,0)}. This implies that all of these
Boolean functions can be constructed from all perfectly
nonlinear Boolean functions with n — 2 variables. For
odd n = 3, it has been also shown that Boolean func-
tions with n variables satisfying the PC with respect to
all but three elements in {0,1}" — {(0,...,0)} satisfy
the PC with respect to all but one elements in it.

Secondly, Boolean functions in PC,(n — 2) has
been considered. For even n > 4, an upper bound of
n — 3 has been given to the degree of the PC of bal-
anced Boolean functions with n variables. This bound
is optimal for n = 4,6. For odd n = 3, it has been
proved that balanced Boolean functions in PC,,(n — 2)
satisfy the PC with respect to all but one elements in
(0,1 ~ {(0,...,0)}.

An open question is whether there exist balanced
Boolean functions with n variables satisfying the PC of
degree n — 3 for even n.
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