
VOL. E104-A NO. 9
SEPTEMBER 2021

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

1304
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.9 SEPTEMBER 2021

PAPER
Update on Analysis of Lesamnta-LW and New PRF Mode LRF∗

Shoichi HIROSE†a), Yu SASAKI††b), and Hirotaka YOSHIDA†††c), Members

SUMMARY We revisit the design of Lesamnta-LW, which is one of
the three lightweight hash functions specified in ISO/IEC 29192-5:2016.
Firstly, we present some updates on the bounds of the number of ac-
tive S-boxes for the underlying 64-round block cipher. While the design-
ers showed that the Viterbi algorithm ensured 24 active S-boxes after 24
rounds, our tool based on Mixed Integer Linear Programming (MILP) in
the framework of Mouha et al. ensures the same number of active S-boxes
only after 18 rounds. The tool completely evaluates the tight bound of
the number of active S-boxes, and it shows that the bound is 103 for full
(64) rounds. We also analyze security of the Shuffle operation in the round
function and resistance against linear cryptanalysis. Secondly, we present
a new mode for a pseudorandom function (PRF) based on Lesamnta-LW. It
is twice as efficient as the previous PRF modes based on Lesamnta-LW. We
prove its security both in the standard model and the ideal cipher model.
key words: Lesamnta-LW, differential cryptanalysis, MILP, PRF, modes,
standard model, ideal cipher model

1. Introduction

The design of cryptographic schemes has been studied for
a long time. In early days, a dedicated primitive was de-
signed for each functionality such as encryption, authenti-
cation and hashing. In contrast, the recent approach is to
design a single primitive and provide multiple functionali-
ties by modes of operations. Permutation-based crypto, typ-
ically using SHA-3 [24], is an example that provides var-
ious functionalities from a single primitive. This modular
approach is particularly useful for lightweight cryptography
that needs to provide multiple functionalities with limited
resource. Such a feature is actually taken into account by the
ongoing lightweight cryptography standardization process
by NIST, which considers algorithms implementing both
of the authenticated encryption (AE) functionality and the
hashing functionality.

Manuscript received September 15, 2020.
Manuscript revised January 31, 2021.
Manuscript publicized March 16, 2021.
†The author is with Faculty of Engineering, University of

Fukui, Fukui-shi, 910-8507 Japan.
††The author is with NTT Secure Platform Laboratories,

Musashino-shi, 180-8585 Japan.
†††The author is with National Institute of Advanced Industrial

Science and Technology, Tokyo, 135-0064 Japan.
∗An earlier version of this paper appeared in the proceedings of

the ACNS 2020 conference [14]. The current article newly added
results on linear cryptanalysis, full security proof, and an example
code of MILP.

a) E-mail: hrs shch@u-fukui.ac.jp
b) E-mail: yu.sasaki.sk@hco.ntt.co.jp
c) E-mail: hirotaka.yoshida@aist.go.jp

DOI: 10.1587/transfun.2020EAP1109

Lesamnta-LW is a lightweight hash function designed
by Hirose et al. [8], [9], which is a successor of the hash
function Lesamnta; one of the first-round candidates in the
NIST SHA-3 competition [11]. Some symmetric property
of Lesamnta was pointed out by a third-party [4] that was
caused by a small amount of constants, and the designers
protected it by replacing the round constants right after the
detection [12]. This experience seems to offer a certain level
of reliability for Lesamnta-LW. Indeed, in 2016, Lesamnta-
LW was internationally standardized by the ISO/IEC JTC
1 SC 27 technical committee. Lesamnta-LW is the only
lightweight hash function optimized for software implemen-
tations specified in ISO/IEC 29192-5:2016 [17].

Lesamnta-LW is a Merkle-Damgård hash function with
its compression function a dedicated block cipher, which we
call Lesamnta-LW-BC. It is a 64-round block cipher and its
block size and key size are 256 bits and 128 bits, respec-
tively. The use of the bigger block size than the key size
can be found only in a limited number of designs, e.g. Rijn-
dael [5] and SHACAL-2 [7].

Lesamnta-LW-BC consists of two parts: the mixing
function and the key schedule function. Its one-round is
depicted in Fig. 1. Lesamnta-LW-BC adopts the 4-branch
type-1 generalized Feistel network (GFN). Each branch of
the mixing function consists of 8 bytes. The updating func-
tion G operates on two columns of 4 bytes. The 4-byte
round-key is added to the left column and then each column
is updated by the function Q, which applies the AES [23]
1-byte S-box (SubBytes, SB) followed by the AES column-
wise linear operation (MixColumns, MC). Finally, 8 bytes
are permuted by the shuffle operation where the byte posi-
tions (0, 1, 2, 3, 4, 5, 6, 7) move to (4, 5, 2, 3, 0, 1, 6, 7). Each
branch of the key schedule function also consists of 4 bytes.
The updating function adds the round-constant and applies
the function Q. A more formal description of Lesamnta-
LW-BC is given in Appendix A.

The designers developed keyed modes of a pseudo-
random function (PRF) based on Lesamnta-LW, which is
interesting in terms of the integration of the hash func-
tion and the keyed function based on the single primitive
Lesamnta-LW-BC. For short messages, a key-prefix (KP)
mode [8], [9] gains significant advantage over the standard
method HMAC-SHA-256. This KP mode has recently stan-
dardized as Tsudik’s keymode specified in ISO/IEC 29192-
6:2019 [18]. A similar mode using the Merkle-Damgård-
Permutation (MDP) was also proposed [1].

There are few pieces of work on evaluation of

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers

HIROSE et al.: UPDATE ON ANALYSIS OF LESAMNTA-LW AND NEW PRF MODE LRF
1305

Fig. 1 One round of Lesamnta-LW-BC.

Lesamnta-LW. Except for the design extension by the de-
signers, as far as we know, there is no follow-up security
analysis even for Lesamnta-LW-BC. No follow-up work ex-
ists for the PRF modes, either. Lesamnta-LW is an ISO stan-
dard and it needs further analyses. For security evaluation
of Lesamnta-LW, Lesamnta-LW-BC is an important target
because its ideal behaivor is the core of the security proof of
Lesamnta-LW.

1.1 Our Contributions

We revisit the security analysis and the designs of Lesamnta-
LW and its PRF mode. The paper contains the following
contributions.

First we improve the security evaluation of Lesamnta-
LW-BC against differential cryptanalysis. The designers
used the Viterbi algorithm and evaluated the number of ac-
tive S-boxes [8]. By their evaluation, it was shown to be
lower bounded by 24 for 24 rounds. In this work, we evalu-
ate it with MILP in the framework of Mouha et al. [22] and
obtain the following results.

• 24 active S-boxes are ensured only by 18 rounds. It im-
plies that the number of total rounds may be reduced to
48 rounds (= 64×18/24) without reducing the security
level originally expected by the designers.

• Considering that the block size of Lesamnta-LW-BC is
256 bits, we derive the bounds for more rounds and
show that 30 rounds are sufficient to ensure 43 ac-
tive S-box with maximum characteristic probability of
2−6×43 = 2−258.

• After two weeks, we found that the minimum num-
ber of active S-boxes for the full (64) rounds is 103.
With this result, the problem of evaluating the security
of Lesamnta-LW-BC against differential cryptanalysis
was closed.

We also provide the analysis of the Shuffle operation, where
the designers borrowed it from the MUGI stream cipher [27]
based on the fact that MUGI has been specified in ISO/IEC

18033-4:2005 [16] (thus reliable), while no security analy-
sis dedicated to the structure of Lesamnta-LW is given. Note
that security analysis of existing design components is im-
portant especially for standardized designs, and there are
several previous researches in this line e.g. against SHA-1
[26] and SIMON [19]. It is possible to imagine that the
designers adopted a two-byte-wise permutation to optimize
implementations by 16-bit micro-controllers. However, we
may have better security by replacing the Shuffle with a
byte-wise permutation. We show that the original Shuffle is
one of the best even including byte-wise permutations with
respect to the number of active S-boxes as well as micro-
controller implementations.

In addition, we investigate the security of Lesamnta-
LW-BC against linear cryptanalysis for the first time. Note
that Lesamnta-LW is a keyless hash function, and thus
the impact of linear cryptanalysis is unclear. However,
Lesamnta-LW-based PRF modes are keyed modes, thus lin-
ear cryptanalysis may apply. Our analysis shows that the
number of rounds that can be attacked by linear cryptanaly-
sis with less than 2128 data is at most 20 rounds. This implies
that the number of rounds to resist linear cryptanalysis (20
rounds) is a bit more than the case with differential crypt-
analysis (18 rounds), but still lower than designer’s original
expectation.

Second, we propose a new mode for PRF which
achieves double throughput and reduces the key size by half
compared with the previous ones [1], [9]. We call it LRF.
It processes 256 bits of message per block cipher call, while
the previous modes process 128 bits of message. Its key size
is 128 bits. Previous PRF modes and LRF are depicted in
Fig. 2 and Fig. 3, respectively. In Fig. 2, the first mode trun-
cates the output and the second mode adopts the MDP mode
that applies a light public permutation to a part of the plain-
text input before the last block cipher call. LRF in Fig. 3
adopts MDP to the key input. Here, the public permutation
is XOR with some predefined constant which is the best pos-
sible to keep the scheme light. We prove the security of LRF
both in the standard and the ideal cipher models. From the

1306
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.9 SEPTEMBER 2021

Fig. 2 Previous PRF modes of Lesamnta-LW-BC. π is a permutation.

Fig. 3 LRF: New PRF mode of Lesamnta-LW-BC. c ∈ {0, 1}n \ {0n} is
a constant. Compared to the previous modes, two 128-bit message blocks
are absorbed per block cipher call.

result in the ideal cipher model, it is secure up to the birthday
bound of the underlying block cipher, which is 128 bits for
Lesamnta-LW-BC. We should mention that, due to the ap-
plication of MDP to the key input, LRF requires Lesamnta-
LW-BC to be secure against related-key attacks. However,
the related key attacks are able to only exploit the XOR re-
lation for the predefined constant.

If a nonce is prepended to the input message, LRF is
a variant of the leakage-resilient re-keying MAC in [25].
Thus, it is expected to be secure against side channel attacks
if protected by the leveled implementation [6], [25]. LRF is
a non-trivial and improved variant since it accepts variable-
length inputs, while the re-keying MAC only accepts fixed-
length inputs. In addition, it uses a block cipher with its
block size larger than its key size, while the re-keying MAC
only considers a block cipher with its block size equal to its
key size.

Lastly we provide several discussions to have better un-
derstanding.

• If we apply the byte-wise truncated differential search
in the related-key setting against Lesamnta-LW-BC,
the number of active S-boxes can be zero for any num-
ber of rounds. However such an efficient trail cannot be
satisfied by taking into account the bit-level difference
propagation.

• LRF is inspired by the previous schemes achiev-
ing higher throughput such as the boosting Merkle-
Damgård MAC [28] and the full-state keyed sponge
[3]. We considered some other candidates similar to
LRF. However, their security turned out to be quite dif-
ferent: They allow distinguishing attacks with about
264 complexity.

1.2 Paper Outline

In Sect. 2, we explain the MILP-based differential trail
search. In Sect. 3, we show the security analysis of
Lesamnta-LW-BC. In Sect. 4, we present the new PRF mode
and prove its security. In Sect. 5, we give several useful dis-
cussion and conclude this paper.

2. Truncated Differential Search with MILP

Mouha et al. [22] showed that the problem of finding trun-
cated differential trails with minimum number of active S-
boxes can be converted into a minimization problem in the
framework of MILP. Problems for MILP are defined by
three factors; objective function, constraints of variables
represented by linear inequalities, and variables with their
value ranges. In the differential trail search, those three fac-
tors are intuitively explained as follows.

Variables. A binary variable is assigned to each byte in
order to represent whether the byte has non-zero dif-
ference (active) or zero-difference (inactive). Let xi ∈

{0, 1} be a binary variable for the i-th byte of the state.
Then we define{

xi = 1 if the i-th byte is active,
xi = 0 if the i-th byte is inactive.

Objective Function. The goal is to find a pattern of xi for
all i such that the total number of active S-boxes is min-
imized. Given the above definition of xi, the objective
function is defined as

minimize
∑

i

xi.

Constraint Linear Inequalities. Active and inactive byte
positions must be consistent with differential propaga-
tion patterns specified by cipher’s algorithm. Those
valid patterns must be described by linear inequalities,
and cryptographer’s main task is to find such conver-
sions between cipher’s operation and linear inequali-
ties. Exact forms of linear inequalities largely depend
on cipher’s operation and we explain it by using a toy
example below.

After a problem for MILP is defined, it can be given to any
MILP solver, e.g. Gurobi Optimizer [15], and the solver re-
turns the optimal solution if exists.

2.1 Example: MILP Model for Toy Cipher

We explain details of the model making of the framework
of Mouha et al. [22] by using a 2-round toy cipher shown in
Fig. 4, in which the state consists of 4 bytes and the round
function consists of the key addition with k0 and k1, Sub-
Bytes and MixColumns.

The internal state consists of 12 bytes for 2 rounds. The

HIROSE et al.: UPDATE ON ANALYSIS OF LESAMNTA-LW AND NEW PRF MODE LRF
1307

Fig. 4 Toy example.

last 4 bytes (in grey) do not affect to the number of active
S-boxes, thus can be ignored simply. 8 binary variables
x0, x1, . . . , x7 represent whether each byte is active or not.
The objective function is to minimize the number of active
S-boxes, which is defined as

minimize x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7.

The remaining is to specify the valid differential propagation
with linear inequalities. The key addition and SubBytes do
not affect the active status of bytes thus those operations are
simply ignored. The MixColumns operation has the prop-
erty that the sum of the input and output active bytes is 5 or
more, otherwise 0. Mouha et al. [22] showed that this prop-
erty can be modeled by using an additional binary variable
and 9 linear inequalities, where a dummy variable represents
whether the column is active or not. Let d0 ∈ {0, 1} be a
dummy variable for the first round. Then, linear inequalities
for the first round are as follows.

x0 + x1 + · · · + x7 − 5d0 ≥ 0, (1)
d0 − x0 ≥ 0, d0 − x1 ≥ 0,
d0 − x2 ≥ 0, d0 − x3 ≥ 0,
d0 − x4 ≥ 0, d0 − x5 ≥ 0,
d0 − x6 ≥ 0, d0 − x7 ≥ 0.

(2)

When d0 = 0 (the column is inactive), Eq. (1) is always true
and 8 inequalities in Eq. (2) ensure that all related bytes are
inactive. When d0 = 1 (the column is active), Eq. (1) ensures
that the sum of related bytes is at least 5 and Eq. (2) is always
true.

The model is general and can be extended even if the
toy cipher has more than 2 rounds. For example, valid prop-
agation for the second round can be modeled by introducing
another dummy variable d1 and 9 more linear inequalities.

Besides the operations in the toy cipher, Lesamnta-LW-
BC has the XOR operation in the generalized Feistel net-
work. Here, we explain how to model the XOR operation.
Let a, b, c be three bytes under the relationship of a ⊕ b = c,
and let three binary variables xa, xb, xc ∈ {0, 1} denote
whether each of a, b, c is active or not. Then the propagation
is invalid when the XOR of a non-active byte and an active
byte results in the non-active byte, or the XOR of two non-
active bytes results in the active byte. Namely, the following
cases are invalid: (xa, xb, xc) = (1, 0, 0), (0, 1, 0), (0, 0, 1).
(Note that the XOR of two active bytes can be active because
a, b, c are byte values, not bit values.) Those can be modeled
by replacing the coefficients ‘5’ in Eqs. (1), (2) with ‘2’ by
introducing a new dummy variable. It is also possible to
model them one by one with the following inequalities.

−xa + xb + xc ≥ 0,
xa − xb + xc ≥ 0,
xa + xb − xc ≥ 0.

(3)

For example, in the top inequality in Eq. (3), the minimum
value of the left-hand side is −1 and this occurs only when
(xa, xb, xc) = (1, 0, 0). Hence, by restricting the sum to sat-
isfy ‘≥ 0,’ only the case with (xa, xb, xc) = (1, 0, 0) is re-
moved from the solution space, while the other patterns will
stay in the solution space. The second and third inequalities
in Eq. (3) can be similarly explained to remove the other two
invalid patterns.

2.2 Advancement of the MILP Model

Many follow-up works are available. One of the most rel-
evant articles to our research is the simple combination of
Matsui’s search strategy [21] with MILP proposed by Zhang
et al. [29].

An overall idea is to take into account the search results
for R − 1 rounds, R − 2 rounds, R − 3 rounds, etc when we
search for the lower bound of the number of active S-boxes
for R rounds. Let Br and s be the lower bound of the number
of active S-boxes for r rounds and the number of S-boxes per
round, respectively. Then we have constraints that among sr
S-boxes in the first r rounds, at least Br S-boxes are active
for r = 1, 2, . . . ,R − 1, which is expressed as

sr−1∑
i=0

xi ≥ Br, for r = 1, 2, . . . ,R − 1.

The same argument can be applied to the sr S-boxes in the
last r rounds, which is expressed as

∑sR−1
i=s(R−r) xi ≥ Br for

r = 1, 2, . . . ,R − 1.
Note that this method works efficiently only when the

search of the bounds is easier when the number of rounds is
smaller, and thus it is natural to assume that when we search
for the bound for R rounds, we have already searched for
the bounds up to R − 1 rounds. This assumption is true for
almost all the previous researches.

Example 1: In the above toy cipher, the lower (tight)
bound of the number of active bytes for 1, 2, 3, and 4 rounds
are 1, 5, 6, and 10, respectively. Suppose that we search
for the bound for 5 rounds, where the objective function is
“minimize x0 + x1 + · · · + x19.” The method of Zhang et
al. adds the following 8 constraints in addition to the frame-
work by Mouha et al.

x0 + x1 + · · · + x3 ≥ 1,
x0 + x1 + · · · + x7 ≥ 5,

x0 + x1 + · · · + x11 ≥ 6,
x0 + x1 + · · · + x15 ≥ 10,

x16 + x17 + · · · + x19 ≥ 1,
x12 + x17 + · · · + x19 ≥ 5,
x8 + x17 + · · · + x19 ≥ 6,
x4 + x17 + · · · + x19 ≥ 10.

1308
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.9 SEPTEMBER 2021

This strategy enables us to evaluate significantly more
rounds of Lesamnta-LW-BC than the simple application of
the framework by Mouha et al.

2.3 Extension to Linear Trail Search

The model for the truncated differential trails can be con-
verted into the truncated linear trail in which we only trace
if each active S-box is involved in the linear trail or not,
i.e. we do not care the actual linear masks for each S-box.
It is particularly simple for AES because the SubBytes op-
eration does not impact to the model and the ShiftRows and
MixColumns operations have exactly the same effect in dif-
ferential and linear cryptanalysis.

Regarding Lesamnta-LW-BC, the model for linear
cryptanalysis is different from the one for differential crypt-
analysis only in the branching and XOR operations in the
generalized Feistel network. Let a, b, c be three bytes with
a relationship and xa, xb, xc ∈ {0, 1} be binary variables to
denote whether each of a, b, c is active or not.

XOR. Suppose that a ⊕ b = c. In the linear cryptanalysis,
if c is involved in the trail, then a ⊕ b must be in the
trail to cancel the existence of c. Hence both a and b
must be in the trail. If c is not involved, then a and b
are not involved. Nemaly, the only valid patterns are
(xa, xb, xc) = (0, 0, 0), (1, 1, 1). xa = xb = xc always
holds, thus no additional variables and constraints need
to be introduced. Note that this is exactly the same as
the branching operation in the differential cryptanaly-
sis.

Branching. Suppose that a = b = c holds. If one of them
is involved in the linear trail, then one of the other two
must be in the trail to cancel each other. This is the
same as the XOR operation in the differential crypt-
analysis, thus can be modeled in the same fashion by
applying Eq. (3).

3. Security Analysis of Lesamnta-LW-BC

3.1 New Bounds of the Number of Active S-Boxes

We first describe our model to search for the truncated differ-
ential trails of Lesamnta-LW-BC with the minimum number
of active S-boxes. Variables related to the first round are
shown in Fig. 5.

3.1.1 Variables

In round i, 8 binary variables from x8(i−1) to x8(i−1)+7 are
assigned to the right most input branch. Similarly, 8 vari-
ables from x8i, x8(i+1), and x8(i+2) are assigned to the second
right most, second left most, and the left most branches, re-
spectively. 8 binary variables from y8(i−1) are introduced to
describe whether each byte after MixColumns is active or
inactive. In addition, two dummy variables d(i−1) and e(i−1)
are introduced to efficiently model MixColumns for the left

Fig. 5 All related variables to model the first round of Lesamnta-LW-BC.

and right columns. In summary, the r-round transformation
is modeled by defining 32 + 8r variables x0, . . . , x32+8r−1, 8r
variables y0, . . . , y8r−1, r variables d0, . . . , dr−1, and r vari-
ables e0, . . . , er−1.

3.1.2 Objective Function

For round i where i = 1, 2, . . . , r, 8 bytes denoted by
x8i, x8i+1, . . . , x8i+7 go through the S-boxes. The objective
function for r rounds is represented as “minimize

∑8r+7
i=8 xi.”

3.1.3 Constraint Linear Inequalities

MixColumns in round i from x8i, x8i+1, x8i+2, x8i+3 to
y8(i−1), y8(i−1)+1, y8(i−1)+2, y8(i−1)+3, are modeled by 9 linear
inequalities and an additional variable di−1 by Eqs. (1) and
(2). The same applies to the other column.

The XOR operation from G function’s output to the
right most branch is model by applying Eq. (3) to each byte.
Considering the Shuffle operation, we model the XOR of
y8i+Shuffle(j), x8i+ j, x8i+ j+32 for j = 0, 1, . . . , 7 in round i.

The model for 3-round Lesamnta-LW-BC is fully de-
scribed in Fig. A· 10.

3.1.4 Evaluation Results

By solving MILP, we obtained the bounds given in Table 1.
Compared to the previous lower bound evaluated by the de-
signers, which is 24 for 24 rounds, more active S-boxes is
ensured, which is 33 for 24 rounds. Hence, Lesamnta-LW-
BC is more secure against differential cryptanalysis than
originally expected. More interestingly, 24 active S-boxes
can be ensured only with 18 rounds. By applying the same
scale, the total number of rounds may be reduced to 48
rounds (= 64× 18/24) by preserving the same security level
as was originally expected. The bound is tight, i.e. there ex-
ist truncated differential trails confirming the bound. As an
example, we show a 24-round trail with 33 active S-boxes
in Fig. 6.

HIROSE et al.: UPDATE ON ANALYSIS OF LESAMNTA-LW AND NEW PRF MODE LRF
1309

Table 1 Tight bounds of the number of active S-boxes of Lesamnta-LW-BC.

Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bounds 0 0 0 1 1 1 2 6 6 7 11 13 14 18 20 21

Rounds 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Bounds 22 25 25 26 27 29 30 33 34 35 39 41 42 46 47 49

Rounds 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Bounds 50 50 51 54 55 56 58 61 62 63 67 69 70 73 73 75

Rounds 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Bounds 76 78 79 81 83 84 86 89 90 91 95 97 98 98 100 103

Fig. 6 24-Round Truncated Differential Trail with 33 Active S-boxes. Blue numbers by the G func-
tion represent the accumulated number of active S-boxes from the first round. Active patterns of the
update states in the last three rounds are not related to the number of active S-boxes, which is repre-
sented by the ‘?’ symbol.

The block size of Lesamnta-LW-BC is 256 bits. The
bound to ensure 43 active S-boxes is interesting because
the maximum differential characteristic probability becomes
smaller than 2−256 after going through 43 active S-boxes
(2−6×43 = 2−258). This motivates us to extend the evaluation
to full rounds. We found that 43 active S-boxes are ensured
after 30 rounds.

3.1.5 Computational Time of the Tool

Only with the framework by Mouha et al. [22], we could
obtain the bounds up to 48 rounds. The computation for
47 and 48 rounds took 370,078 seconds (about 103 hours)
and 247,771 seconds (about 69 hours), respectively, and we
gave up evaluating more rounds because of too much com-
putation time.

We then introduced the method by Zhang et al. [29].
The computational time for 47 and 48 rounds decreased to
19,913 seconds (5.5 hours) and 15,117 seconds (4.2 hours)
respectively. This improvements allowed us to derive the
bounds for the full rounds. The heaviest instance was for 61
rounds, which required 1,269,330 seconds (352.6 hours or
14.7 days) to find the tight bound.

3.2 Security Analysis of Shuffle Operation

Shuffle of Lesamnta-LW is originally from the byte-
shuffling function in MUGI [27]. The rational of its choice
seems to rely on the fact that MUGI has been specified in
ISO/IEC 18033-4:2005 [16]. However, no specific security
analysis was given to explain the validity of the choice. This
motivates us to evaluate the security of various choices of
the Shuffle operation.

The original choice is a 2-byte-wise permutation,
which may be because Lesamnta-LW was designed to be ef-
ficient in micro-controllers with 16-bit registers. In this sec-
tion, we relax this constraint and consider any byte-wise per-
mutation to investigate the existence of choices with higher
security.

3.2.1 The Number of Crossing Bytes NX

In each round, outside G, the cancellation of differences
only occurs between the right most input state and the out-
put of the G function. Moreover, MixColumns in the G
function has the property that the active-byte-position pat-
terns after MixColumns only depend on the weight of the

1310
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.9 SEPTEMBER 2021

Fig. 7 Possible Differential Propagation of Branch-wise Truncated Differential Trails for 4-Branch
GFN. Nodes with two outgoing arrows can propagate to two differentials depending on the cancellation
of the difference. Dotted lines in blue show the propagation when differences are not cancelled (even
though it is possible). Nodes with red color increase the number of active S-boxes.

Table 2 Truncated differential trail for NX = 4 activating only half of the state.

input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
000L L000 0L00 00L0 R00L LR00 0LR0 L0LR 0L0L L0L0 RL0L LRL0 RLRL 0RLR 00RL 000R

000L L000 0L00 00L0 R00L LR00 0LR0 L0LR RL0L LRL0 RLRL 0RLR 00RL 000R

input differences. Stating differently, any input truncated
difference having the same number of active S-boxes can
produce the same output-difference patterns through Mix-
Columns. This property makes the position of input differ-
ences of MixColumns equivalent with respect to the number
of active S-boxes.

Example 2: Two shuffles parameters “45230167” and
“45236701” are equivalent with respect to the bounds of the
number of active S-boxes, because two parameters are only
different in the byte positions of ‘0’, ‘1’, ‘6’ and ‘7’ inside
the right column. Indeed we searched for the bounds for
“45236701” up to 32 rounds, and they match the ones in
Table 1.

Given that the position inside the column is irrelevant,
the important issue is the number of bytes that move from
one side of the column to the other side of the column
through the Shuffle operation. We call those bytes “cross-
ing bytes” and denote its number by NX . For example, NX
of the original Shuffle “45230167” is 2 because the byte po-
sitions 0 and 1 move to the right column, and similarly byte
positions 4 and 5 move to the left column.

The range of NX is from 0 to 4 because 1 column con-
sists of 4 bytes. It is obvious that NX = 0 is insecure because
16 bytes located in the left half of each state and the other
16 bytes located in the right half of each state never inter-
act each other. In the following, we will explain that all the
parameters having NX = 0, 1, or 3 allow efficient truncated
differential trails, thus choosing NX = 2 is best both in secu-
rity as well as implementation efficiency.

3.2.2 Truncated Differential Trails General to Type-1 4-
Branch GFN

Before we explain the analysis for NX = 0, 1, or 3, we de-
scribe truncated differential trails in the branch-wise level
that are general to type-1 4-branch GFN where the G func-
tion is bijective.

By only considering whether each state is active or
inactive, the 4 branch state only has 15 possible patterns
0001, 0010, . . . , 1111. Note that 0000 never appears in the

single-key differential trail. When the active patterns of the
round input does not allow the differential cancellation, the
active patterns of the output is uniquely determined. For ex-
ample, when the input pattern is 0001, the output pattern
is always 1000. When the differential cancellation occurs
in the round, there are two possible output patterns. For
example, when the input pattern is 1011 the output pat-
tern is either 1101 (without difference cancellation) or 0101
(with difference cancellation). By applying the same analy-
sis for all 15 patterns, we can describe all possible differen-
tial propagation in the state-change diagram, which is shown
in Fig. 7.

For a large number of rounds, the differential trail will
be iterative in the branch-wise level. Most of the patterns
that do not increase the number of active bytes (states hav-
ing 0 in the second right most branch) only exist in long
iterations. Indeed the ratio of the number of rounds with ac-
tive S-boxes to the number of rounds for the whole iteration
becomes smallest (8/15) or the second smallest (7/13) when
1-active branch states are included in the iteration. Hence, in
the branch level, the 15-round iterative trail with ratio 8/15
is the most powerful. However, the actual number of rounds
depends on the details of G or the parameter of Shuffle in G.
In the following, we look more details for each NX .

3.2.3 Existence of Efficient Trails with NX = 4

In this parameter, 4 bytes in the left (resp. right) columns
move to the right (resp. left) column, where the order inside
each column can be any order. “47653102” is an example.

We found that NX = 4 allows attackers to construct
truncated differential trails only by activating one of the
columns for each state. Let L and R be the state that has
some active bytes in the left and right column, respectively.
Then the 13-round and 15-round generic branch-wise trun-
cated differentials can be instantiated as shown in Table 2.
The number of active bytes in L and R must be a valid rela-
tionship over MixColumns, namely the sum of the number
of active bytes is 5. To explain the above 15-round trail as
an example, it takes L and R as input of the G function 5
times and 3 times, respectively. Hence by setting L an R to

HIROSE et al.: UPDATE ON ANALYSIS OF LESAMNTA-LW AND NEW PRF MODE LRF
1311

Table 3 Tight bounds of the number of linearly active S-boxes of Lesamnta-LW-BC.

Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bounds 0 0 0 1 1 1 2 6 6 7 11 12 13 14 15 16

Rounds 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Bounds 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

have only 1 active byte and 4 active bytes respectively, the
above 15-round trails will have 1 × 5 + 4 × 3 = 17 active S-
boxes. However, although the above 15-round trail iterative
in the branch-wise level, the second iteration will start with
R. Hence 2 iterations of the 15-round trail will take each of
L and R as input 8 times and have 8× 5 = 40 active S-boxes.
Asymptotically the number of active bytes for 30x rounds
for a positive integer x is 40x. Note that as shown in Table 1,
the original shuffle parameter of Lesamnta-LW-BC ensures
at 97 active S-boxes for 60 rounds, which is significantly
larger than the case with NX = 4.

3.2.4 Existence of Efficient Trails with NX = 1 or NX = 3

In those parameters, permutations are no longer 2-byte-
wise. Hence implementation efficiency in 16-bit CPUs will
decrease. One of the most surprising analysis in Sect. 3.2
is that by introducing such byte-wise permutation, not only
the efficiency but also the security will decrease.

The analysis is similar to the case with NX = 4. Indeed
attackers can build the same trails in Table 2 with slightly
more constraints for L and R. The strategy is to set L and R
be 2-byte active and 3-byte active, respectively (or its vise
verse). Namely, for NX = 1, the behavior of the differential
propagation is the same as NX = 0 except for the crossing
1 byte. For NX = 3, the behavior of the differential propa-
gation is the same as NX = 4 except for the staying 1 byte.
By avoiding both of L and R be fully active, attackers can
ensure that the crossing 1 byte for NX = 1 and the staying 1
byte for NX = 3 is always inactive. As a consequence, trails
in Table 2 can be instantiated with 2- and 3-active byte state.
Moreover, the asymptotic property having 40x active bytes
in 30x rounds is the same as the parameters with NX = 4.

We emphasize that the original specification of
Lesamnta-LW-BC has NX = 2, which is the best against
differential cryptanalysis. For NX = 2, as demonstrated in
Fig. 6, it is inevitable to activate both columns simultane-
ously to construct 15-round or 13-round iterative trails.

3.3 Linear Cryptanalysis of Lesamnta-LW-BC

Given the model for the differential cryptanalysis, to change
the model for the linear cryptanalysis is simple. The vari-
ables used to model the first round are shown in Fig. 8, and
the constraints are generated as explained in Sect. 2.3. The
bounds derived by the MILP up to 32 rounds are given in
Table 3.

There is no analysis in the original document of
Lesamnta-LW, which is reasonable because Lesamnta-LW
is originally a hash function and the impact of linear crypt-

Fig. 8 All related variables to model the first round of Lesamnta-LW-BC
in linear cryptanalysis.

Fig. 9 1-round iterative truncated linear trail.

analysis on the hash function is not clear. Compared to the
differential bound in Table 1, the number of active S-boxes
is the same up to 11 rounds. However, from 12 rounds, the
number of linearly active S-boxes is always the same as the
number of rounds. We investigated the details of the linear
trails and detected that Lesamnta-LW-BC allows a 1-round
iterative truncated linear trail, which is shown in Fig. 9.

The analysis shows that to ensure 24 linearly active
bytes, the round function needs to be iterated at least 24
times, which happens to match the original evaluation by the
designers for differential cryptanalysis. However, we note
that the complexity evaluation is different between differen-
tial and linear cryptanalysis, and 21 rounds is sufficient to
resist linear cryptanalysis under 128-bit security.

The analysis is as follows. The largest bias of the AES
S-box is know to be 2−4. From the piling-up lemma [20],
the largest bias when X active S-boxes are combined is com-

1312
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.9 SEPTEMBER 2021

puted as 2X−1 · (2−4)X . When the bias is p, the data complex-
ity becomes p−2 and we want it to be smaller than 2−128.
Hence, the number of rounds C that will ensure the data
complexity of less than 2128 is computed as

2X−1 · (2−4)X > 2−64, (4)

which is −3X − 1 > −64. Hence, X < 21 rounds is the
condition to apply the linear attack with data complexity of
less than 2128.

4. New PRF Mode Based on Lesamnta-LW-BC

In this section, we propose a new PRF mode for Lesamnta-
LW-BC, which we call LRF. It achieves double throughput
compared to the previous modes [9], [13]. Its specification
is described in Sect. 4.1. The security in the standard model
and in the ideal model is discussed in Sect. 4.2 and Sect. 4.3,
respectively.

For a set S, let S∗ :=
⋃∞

i=0 S
i and S+ :=

⋃∞
i=1 S

i. Let
FD,R be the set of all functions with their domain and range
D and R, respectively. Let PD be the set of all permutations
on D. Let s ←← S represent substitution of an element cho-
sen uniformly at random from S to s. For {0, 1}-sequences x
and y, let x‖y be their concatenation. Let ε be the sequence
of length 0.

4.1 Description of LRF

Let E : {0, 1}n × {0, 1}2n → {0, 1}2n be Lesamnta-LW-BC
with its key space {0, 1}n. The proposed PRF mode LRFE :
{0, 1}n×{0, 1}∗ → {0, 1}n with its key space {0, 1}n is defined
as follows. For a given input (K,M) ∈ {0, 1}n × {0, 1}∗, it
first applies injective padding pad to M and gets a sequence
of length a positive multiple of 2n. Let M ← pad(M) and
m := |M|/(2n). It divides M into 2n-bit blocks so that M =

M[1]‖M[2]‖ · · · ‖M[m] ∈ ({0, 1}2n)m. Then, it computes
V[i]← E(V0[i−1],M0[i]‖(M1[i]⊕V1[i−1])) for 1 ≤ i ≤ m−
1, and V[m]← E(V0[m−1]⊕c,M0[m]‖(M1[m]⊕V1[m−1])),
where V0[0] ← K, V1[0] ← 0n, V[i] := V0[i]‖V1[i] and
M[i] := M0[i]‖M1[i] such that |V0[i]| = |V1[i]| = |M0[i]| =

|M1[i]| = n. Finally, it returns V[m] as its output. LRFE is
also depicted in Fig. 3.

During the discussion of security of LRFE , without
loss of generality, it is assumed that LRFE : {0, 1}n ×
({0, 1}2n)+ → {0, 1}n since any injective padding works for
LRFE .

4.2 Security in the Standard Model

4.2.1 Definition

Let f ∈ FK×D,R be a keyed function with its key space K .
For any K ∈ K , fK(·) := f (K, ·) ∈ FD,R. Let D be an
adversary against f . D has oracle access to functions inFD,R
and outputs 0 or 1. Then, the prf-advantage of D against f
is defined by

Advm-prf
f (D) :=∣∣∣Pr[D fK1 ,..., fKm = 1] − Pr[Dρ1,...,ρm = 1]

∣∣∣,
where K j’s and ρ j’s are chosen uniformly and independently
at random from K and FD,R, respectively. In particular,
Advprf

f (D) := Adv1-prf
f (D).

If f is a keyed permutation on D and D has oracle ac-
cess to m permutations in PD, then the prp-advantage of D
against f is denoted by Advm-prp

f (D). Advprp
f (D) is defined

similarly.
A PRF under related-key attacks is formalized by Bel-

lare and Kohno [2]. Let Φ ⊂ FK ,K be a set of related-
key-derivation functions and let rk ∈ FΦ×K ,K be a function
such that rk(ϕ,K) := ϕ(K). Let D be an adversary against
f ∈ FK×D,R. D has oracle access to the functions of the form
g(rk(·,K), ·), where g ∈ FK×D,R and K ∈ K . g(rk(·,K), ·) re-
ceives (ϕ, x) ∈ Φ ×D as a query and returns g(ϕ(K), x). Let
g[K] := g(rk(·,K), ·) to make the notation simpler. The prf-
rka-advantage of D making aΦ-related-key attack (Φ-RKA)
against f is defined by

Advm-prf-rka
Φ, f (D) :=∣∣∣Pr[D f [K1],..., f [Km] = 1] − Pr[Dρ1[K1],...,ρm[Km] = 1]

∣∣∣,
where K j’s and ρ j’s are chosen uniformly and independently
at random from K and FK×D,R, respectively. In partic-
ular, Advprf-rka

Φ, f (D) := Adv1-prf-rka
Φ, f (D). Advm-prp-rka

Φ, f (D) and

Advprp-rka
Φ, f (D) are defined similarly.

4.2.2 Result

The following theorem implies that LRFE is a PRF if the
underlying block cipher E is a PRP under {id, ac}-related
key attacks, where id is the identity permutation over {0, 1}n

and ac is a permutation over {0, 1}n such that ac(K) := K⊕c.
Let TE represent the time to compute E.

Theorem 1: Let A be any prf-adversary against LRFE . For
A, let t be its running time, q be the number of its queries,
and ` be the upper bound on the number of message blocks
in each of its queries. Then, there exists some prp-adversary
B making a related-key attack on E such that

Advprf
LRFE (A) ≤ `q · Advprp-rka

{id,ac},E(B) + `q2/22n+1.

B runs in time at most about t + O(`qTE) and makes at most
q queries.

Theorem 1 follows from the two lemmas given below.

Lemma 1: Let A be any prf-adversary against LRFE . For
A, let t be its running time, q be the number of its queries,
and ` be the upper bound on the number of message blocks
in each of its queries. Then, there exists some prf-adversary
B making a related-key attack on E such that

Advprf
LRFE (A) ≤ ` · Advq-prf-rka

{id,ac},E (B).

B runs in time at most about t + O(`qTE) and makes at most

HIROSE et al.: UPDATE ON ANALYSIS OF LESAMNTA-LW AND NEW PRF MODE LRF
1313

q queries.

Proof : For M = M[1]‖M[2]‖ · · · ‖M[m], where M[j] ∈
{0, 1}2n for 1 ≤ j ≤ m, let M[j1, j2] := M[j1]‖M[j1 +

1]‖ · · · ‖M[j2] for 1 ≤ j1 ≤ j2 ≤ m and M[j1, j2] := ε if
j1 > j2. For i ∈ {0, 1, . . . , `}, let Γi : ({0, 1}2n)+ → {0, 1}2n be
a random function such that

Γi(M) :=

γ0(M) if m ≤ i,
LRFE(γ1(M[1, i]),M[i + 1,m]) otherwise,

where γ0 and γ1 are independent random functions such that
γ0 is chosen uniformly at random from F({0,1}2n)+,{0,1}2n and γ1
is chosen uniformly at random from {γ | γ ∈ F({0,1}2n)∗,{0,1}2n ∧

γ(ε) ∈ {0, 1}n × {0n}}. Let Pi := Pr[AΓi = 1]. Then, since
each query made by A has at most ` message blocks,

Advprf
LRFE (A) =

∣∣∣P0 − P`

∣∣∣.
Let us consider the following prf-adversary B mak-

ing a {id, ac}-RKA against E. B is given access to q
oracles, which are either E[K1], . . . , E[Kq] or ρ1[K1], . . . ,
ρq[Kq], where K j’s and ρ j’s are chosen independently and
uniformly at random from {0, 1}n and F{0,1}n×{0,1}2n,{0,1}2n , re-
spectively. B simulates two independent random functions
β0 and β1 via lazy sampling: β0 is chosen uniformly at ran-
dom from F({0,1}2n)+,{0,1}2n and β1 is chosen uniformly at ran-
dom from {β | β ∈ F({0,1}2n)∗,{0,1}n ∧ β(ε) = 0n}. B first samples
r ∈ {1, . . . , `} uniformly at random. Then, B runs A. Finally,
B outputs the same output as A.

For 1 ≤ k ≤ q, let M(k) be the k-th query made by A.
Suppose that M(k) has m blocks. If m ≥ r, then B makes
a query to its p(k)-th oracle, where p(k) ← p(k′) if there
exists a previous query M(k′) (k′ < k) such that M(k′)[1, r −
1] = M(k)[1, r − 1], and p(k) ← k otherwise. B asks to its
p(k)-th oracle (ac, X(k)) if m = r and (id, X(k)) if m ≥ r + 1,
where X(k) := M(k)

0 [r]‖(β1(M(k)[1, r − 1]) ⊕ M(k)
1 [r]). Then,

in response to M(k), B returns
β0(M(k)) if m < r,
gp(k)(Kp(k) ⊕ c, X(k)) if m = r,
LRFE(gp(k)(Kp(k), X(k)),M(k)[r + 1,m]) if m > r,

where gp(k) is either E or ρp(k), which depends on B’s oracles.
Suppose that B’s oracles are E[K1], . . . , E[Kq]. Then,

since Kp(k) can be regarded as an output of a random function
for an input M(k)[1, r − 1], B implements Γr−1 for A. Thus,

Pr[BE[K1],...,E[Kq] = 1] =
1
`

∑̀
i=1

Pi−1 .

Suppose that B’s oracles are ρ1[K1], . . . , ρq[Kq]. Then,
since ρp(k)(Kp(k) ⊕ c, ·) and ρp(k)(Kp(k), ·) are independent, B
implements Γr for A. Thus,

Pr[Bρ1[K1],...,ρq[Kq] = 1] =
1
`

∑̀
i=1

Pi.

From the discussions above,

Advq-prf
E (B)

=
∣∣∣∣Pr[BE[K1],...,E[Kq] = 1] − Pr[Bρ1[K1],...,ρq[Kq] = 1]

∣∣∣∣
=

1
`

Advprf
LRFE (A).

B makes at most q queries and runs in time at most about
t + O(`qTE). �

Lemma 2: Let A be any prf-adversary making a related-
key attack on E. For A, let t be its running time and q be the
number of its queries. Then, there exists some prp-adversary
B making a related-key attack on E such that

Advm-prf-rka
{id,ac},E (A) ≤ m · Advprp-rka

{id,ac},E(B) + q2/22n+1.

B runs in time at most about t + O(qTE) and makes at most
q queries.

The proof is omitted since it is similar to that of Lemma 2
in [10].

For the upper bound of Theorem 1, due to the ex-
haustive key search, Advprp-rka

{id,ac},E(B) = Ω(tB/2n), where tB
is the running time of B. It seems reasonable to assume
that tB = Ω(`q), which suggests that Theorem 1 guarantees
at most (n/2)-bits of security. The exhaustive key search
is generic and does not exploit the internal structure of the
target block cipher, however, and the result in the next sub-
section implies that the proposed PRF mode may have n-bits
of security against such kind of generic attacks.

4.3 Security in the Ideal Model

In this section, the indistinguishability of LRFE from a ran-
dom oracle is discussed in the ideal cipher model. Namely,
E is an ideal block cipher chosen uniformly at random from
the set of the keyed permutations over {0, 1}2n with their key
space {0, 1}n.

4.3.1 Definition

Let CE be a construction of a keyed function using the ideal
block cipher E. Let CE

K be CE with its key K chosen uni-
formly at random. Let R be a random oracle chosen uni-
formly at random from all the functions which have the same
domain and range as CE . Then, the indistinguishability ad-
vantage of an adversary A against CE is defined by

Advind
CE (A) :=

∣∣∣Pr[ACE
K ,E,E

−1
= 1] − Pr[AR,E,E−1

= 1]
∣∣∣.

4.3.2 Result

The following theorem implies that LRFE has the n-bit in-
distinguishability in the ideal cipher model. Thus, LRFE is
secure up to the birthday bound of the size of its internal
state against generic distinguishing attacks without exploit-
ing the internal structure of E.

Theorem 2: Let A be any adversary against LRFE . For A,

1314
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.9 SEPTEMBER 2021

let qe and qd be the numbers of its encryption and decryption
queries to E, respectively, q be the number of its queries
to the oracle accepting variable-length inputs, and σ be the
total number of message blocks in the q queries. Then,

Advind
LRFE (A) ≤

(σ + qe + qd)2

22n +
σq
22n +

qe + qd

2n .

The proof is given in Appendix B.

5. Discussion and Conclusion

In this section, we discuss more observations about
Lesamnta-LW.

5.1 Related-Key Security of Lesamnta-LW-BC

The key schedule of Lesamnta-LW-BC adopts the byte-wise
structure, thus the MILP model in Sect. 3 can be extended
to related-key. It turned out that the related-key security
of Lesamnta-LW-BC cannot be obtained only by analyzing
whether each byte is active or not.

Only by considering whether each byte is active or not,
attackers can build the related-key differential trail with no
active S-box in any number of rounds. This is achieved by
activating all the key bytes and the left half of the round
function state. As shown in Fig. 10, by assuming no cancel-
lation in the key schedule, 4 bytes of round keys are always
active and this can be cancelled with 4-byte difference in
the state. Then, the input to SubBytes is inactive in all the
rounds.

However, this cannot be exploited by actual Lesamnta-
LW-BC because active bytes do not always cancel each
other during the round-key addition. Indeed, in the trail in
Fig. 10, difference in the round function state never changes
while the difference values in the key state must change due
to the GFN transformation.

5.2 Insecurity of Constructions Similar to LRF

One may wonder whether there exist other methods to ab-
sorb 256-bit input per block cipher call. Indeed, we consid-
ered several other constructions, however it turned out that
many of them would not be as secure as LRF. Here we dis-
cuss two such constructions as failure examples.

5.2.1 Insecure Construction 1

The first construction is depicted in Fig. 11. It simply ap-
plies boosting-MD MAC [28] to the previous PRF in the
upper side of Fig. 2 in order to absorb the 256-bit input per
block and it tries to achieve the security by truncating the
last output.

This construction is distinguished from a 128-bit ran-
dom function only with 264 queries by an extension attack
though its internal state size is 256 bits. The attack is de-
picted in Fig. 12 and its procedure is as follows.

Fig. 10 Key schedule function and byte-wise related-key differential
trail.

Fig. 11 Insecure construction 1 (IC1).

Fig. 12 Distinguisher on IC1.

1. Make 264 queries by choosing distinct 1-block mes-
sages M(i)

0 [1]‖M(i)
1 [1] for i = 1, 2, . . . , 264 to observe

the output T (i). (black in Fig. 12)
2. Fix M0[2] to some value denoted by X.
3. For each i, set M(i)

1 [2] to T (i). Then, the attacker
queries M(i)

0 [1]‖M(i)
1 [1]‖X‖T (i) to observe the corre-

sponding output T ′(i). (blue in Fig. 12)
4. There should be a collision of 128-bit output T ′(i). Let

i1 an i2 be the indices of colliding pair. Then, choose
new X and check if M(i)

0 [1]‖M(i)
1 [1]‖X‖T (i) for replaced

X collide again with i = i1, i2.

264 queries are made at Step 1, which generates a collision in
the upper half of the block cipher output (denoted by V (i) in
grey in Fig. 12, which is undisclosed to the attacker). Hence
after adjusting the lower half of the second block cipher in-
put by M(i)

1 [2]← T (i), the collision of V (i) is preserved to the
collision of T ′(i).

5.2.2 Insecure Construction 2

The second construction applies the MDP (public permuta-
tion before the last block) in the lower half of the internal
state. The construction is depicted in Fig. 13.

This construction can also be distinguished from a 256-
bit random function only with 264 queries for Lesamnta-LW-

HIROSE et al.: UPDATE ON ANALYSIS OF LESAMNTA-LW AND NEW PRF MODE LRF
1315

Fig. 13 Insecure Construction 2 (IC2).

Fig. 14 3-block query.

Fig. 15 2-block query plus offline extension.

BC by a bit different attack procedure.

1. Fix M[1],M[3],M[4],M[5] to some value X. Query
X‖M[2](i)‖X‖X‖X for i = 1, 2, . . . , 264 to obtain 256-bit
T (i)

U ‖T
(i)
L , where T (i)

U and T (i)
L are the upper and the lower

halves of the function’s output, respectively. (Fig. 14)
2. Query X‖M[2](j)‖X for j = 1, 2, . . . , 264 to obtain 256-

bit T ′(j)
U ‖T

′(j)
L . Moreover, simulate the computation

for the extension with additional input X‖X offline.
Namely, compute ET ′(j)

U

(
X‖(π(T ′(j)

L) ⊕ X)
)
. (Fig. 15)

3. Check if there exists a collision between the results of
the above two steps.

By fixing M[1] and M[3], the key and the upper half
of the block input to the second block is fixed. After Step 1
and Step 2, a collision should occur in the lower half of the
block input to the second block. Let i′ and j′ be the indices
for the colliding pair. For this pair, the 256-bit output of the
second block cipher call also collides. Given the value of
T ′(j)

U ‖T
′(j)
L in Step 2, the simulation for the third block cipher

call has no secret value, hence the results of the simulation
for j′ and the output for i′ always collide.

5.3 Concluding Remarks

In this paper we revisited the security of an ISO standard
Lesamnta-LW. We first improved the bound of the number
of active S-boxes with MILP to show that Lesamnta-LW ac-
tivates more S-boxes than originally expected and derived

the tight bound of the full cipher. We then analyzed the
Shuffle operation to show that 2-byte-wise shuffle is better
than byte-wise shuffle, and finally evaluated security against
linear cryptanalysis.

In the second part, we proposed a new PRF mode based
on Lesamnta-LW-BC that doubles the number of processed
message bits per block-cipher call. We provided the security
proofs both in the standard and the ideal cipher models.

Finally, we discussed the observation of the related-key
truncated differentials in the branch-wise truncation and fail-
ure examples.

We believe the ISO standard Lesamnta-LW deserves
more attention from the community and this research pro-
vides deeper understanding of its security.

Acknowledgments

The first author was supported in part by JSPS KAKENHI
Grant Number JP18H05289.

References

[1] A. Akhimullah and S. Hirose, “Lightweight hashing using
Lesamnta-LW compression function mode and MDP domain exten-
sion,”CANDAR 2016, pp.590–596, IEEE Computer Society, 2016.

[2] M. Bellare and T. Kohno, “A theoretical treatment of related-key
attacks: RKA-PRPs, RKA-PRFs, and applications,” E. Biham, ed.,
EUROCRYPT 2003, volume 2656 of LNCS, pp.491–506. Springer,
2003.

[3] G. Bertoni, J. Daemen, M. Peeters, and G.V. Assche, “Permutation-
based encryption, authentication and authenticated encryption,”
Workshop Records of DIAC 2012, pp.159–170, 2012.

[4] C. Bouillaguet, O. Dunkelman, G. Leurent, and P. Fouque, “Another
look at complementation properties,”S. Hong and T. Iwata, eds., FSE
2010, volume 6147 of LNCS, pp.347–364, Springer, 2010.

[5] J. Daemen and V. Rijmen, AES Proposal: Rijndael (Document ver-
sion 2), Submission to NIST, 1999.

[6] C. Guo, O. Pereira, T. Peters, and F. Standaert, “Authenticated
encryption with nonce misuse and physical leakage: Definitions,
separation results and first construction - (extended abstract),”
P. Schwabe and N. Thériault, eds., LATINCRYPT 2019, volume
11774 of LNCS, pp.150–172, Springer, 2019.

[7] H. Handschuh and D. Naccache, SHACAL, Modifications to
NESSIE submissions selected for 2nd Phase, 2001.

[8] S. Hirose, K. Ideguchi, H. Kuwakado, T. Owada, B. Preneel, and
H. Yoshida, “A lightweight 256-bit hash function for hardware and
low-end devices: Lesamnta-LW,” K.H. Rhee and D. Nyang, eds.,
ICISC 2010, volume 6829 of LNCS, pp.151–168, Springer, 2010.

[9] S. Hirose, K. Ideguchi, H. Kuwakado, T. Owada, B. Preneel, and
H. Yoshida, “An AES based 256-bit hash function for lightweight
applications: Lesamnta-LW,” IEICE Trans. Fundamentals, vol.E95-
A, no.1, pp.89–99, Jan. 2012.

[10] S. Hirose and H. Kuwakado, “Efficient pseudorandom-function
modes of a block-cipher-based hash function,” IEICE Trans. Fun-
damentals, vol.E92-A, no.10, pp.2447–2453, Oct. 2009.

[11] S. Hirose, H. Kuwakado, and H. Yoshida, “SHA-3 Proposal: Lesam-
nta,” Submission to NIST, 2008.

[12] S. Hirose, H. Kuwakado, and H. Yoshida, “A minor change to
Lesamnta — Change of round constants —,” Available at webpage,
2010.

[13] S. Hirose, H. Kuwakado, and H. Yoshida, “A pseudorandom-
function mode based on Lesamnta-LW and the MDP domain exten-
sion and its applications,” IEICE Trans. Fundamentals, vol.E101-A,

http://dx.doi.org/10.1109/candar.2016.0107
http://dx.doi.org/10.1109/candar.2016.0107
http://dx.doi.org/10.1109/candar.2016.0107
http://dx.doi.org/10.1007/3-540-39200-9_31
http://dx.doi.org/10.1007/3-540-39200-9_31
http://dx.doi.org/10.1007/3-540-39200-9_31
http://dx.doi.org/10.1007/3-540-39200-9_31
http://dx.doi.org/10.1007/978-3-642-13858-4_20
http://dx.doi.org/10.1007/978-3-642-13858-4_20
http://dx.doi.org/10.1007/978-3-642-13858-4_20
http://dx.doi.org/10.1007/978-3-030-30530-7_8
http://dx.doi.org/10.1007/978-3-030-30530-7_8
http://dx.doi.org/10.1007/978-3-030-30530-7_8
http://dx.doi.org/10.1007/978-3-030-30530-7_8
http://dx.doi.org/10.1007/978-3-030-30530-7_8
http://dx.doi.org/10.1007/978-3-642-24209-0_10
http://dx.doi.org/10.1007/978-3-642-24209-0_10
http://dx.doi.org/10.1007/978-3-642-24209-0_10
http://dx.doi.org/10.1007/978-3-642-24209-0_10
http://dx.doi.org/10.1587/transfun.e95.a.89
http://dx.doi.org/10.1587/transfun.e95.a.89
http://dx.doi.org/10.1587/transfun.e95.a.89
http://dx.doi.org/10.1587/transfun.e95.a.89
http://dx.doi.org/10.1587/transfun.e92.a.2447
http://dx.doi.org/10.1587/transfun.e92.a.2447
http://dx.doi.org/10.1587/transfun.e92.a.2447
https://dx.doi.org/10.1587/transfun.E101.A.110
https://dx.doi.org/10.1587/transfun.E101.A.110
https://dx.doi.org/10.1587/transfun.E101.A.110

1316
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.9 SEPTEMBER 2021

no.1, pp.110–118, Jan. 2018.
[14] S. Hirose, Y. Sasaki, and H. Yoshida, “Lesamnta-LW revisited: Im-

proved security analysis of primitive and new PRF mode,” M. Conti,
J. Zhou, E. Casalicchio, and A. Spognardi, eds., ACNS 2020, vol-
ume 12146 of LNCS, pp.89–109. Springer, 2020.

[15] G.O. Inc. Gurobi optimizer 7.0. Official webpage, http://www.
gurobi.com/, 2016.

[16] ISO/IEC JTC 1. ISO/IEC 18033-4-5:2005 Information technology
– Security techniques – Encryption algorithms – Part 4: Stream ci-
phers, first edition, July 2005.

[17] ISO/IEC JTC 1. ISO/IEC 29192-5:2016 Information technology –
Security techniques – Lightweight cryptography – Part 5: Hash-
functions, first edition, Aug. 2016.

[18] ISO/IEC JTC 1. ISO/IEC 29192-6:2019 Information technology –
Security techniques – Lightweight cryptography – Part 6: Message
Authentication Codes, first edition edition, Sept. 2019.

[19] K. Kondo, Y. Sasaki, and T. Iwata, “On the design rationale of Simon
block cipher: Integral attacks and impossible differential attacks
against Simon variants,” M. Manulis, A. Sadeghi, and S. Schneider,
eds., ACNS 2016, volume 9696 of LNCS, pp.518–536, Springer,
2016.

[20] M. Matsui, “Linear cryptanalysis method for DES cipher,” T. Helle-
seth, ed., EUROCRYPT’93, volume 765 of LNCS, pp.386–397,
Springer, 1993.

[21] M. Matsui, “On correlation between the order of S-boxes and the
strength of DES,” A.D. Santis, ed., EUROCRYPT’94, volume 950
of LNCS, pp.366–375, Springer, 1994.

[22] N. Mouha, Q. Wang, D. Gu, and B. Preneel, “Differential and lin-
ear cryptanalysis using mixed-integer linear programming,” C. Wu,
M. Yung, and D. Lin, eds., Inscrypt 2011, volume 7537 of LNCS,
pp.57–76, Springer, 2011.

[23] National Institute of Standards and Technology, FIPS 197: Ad-
vanced Encryption Standard (AES), Nov. 2001.

[24] National Institute of Standards and Technology, FIPS 202, SHA-3
Standard: Permutation-Based Hash and Extendable-Output Func-
tions, Aug. 2015.

[25] O. Pereira, F. Standaert, and S. Vivek, “Leakage-resilient authen-
tication and encryption from symmetric cryptographic primitives,”
Proc. 22nd ACM SIGSAC, pp.96–108, 2015.

[26] N. Pramstaller, C. Rechberger, and V. Rijmen, “Impact of rotations
in SHA-1 and related hash functions,” B. Preneel and S.E. Tavares,
eds., SAC 2005, volume 3897 of LNCS, pp.261–275, Springer,
2005.

[27] D. Watanabe, S. Furuya, H. Yoshida, K. Takaragi, and B. Preneel, “A
new keystream generator MUGI,” J. Daemen and V. Rijmen, eds.,
FSE 2002, volume 2365 of LNCS, pp.179–194, Springer, 2002.

[28] K. Yasuda, “Boosting Merkle-Damgård hashing for message au-
thentication,” K. Kurosawa, ed., ASIACRYPT 2007, volume 4833
of LNCS, pp.216–231, Springer, 2007.

[29] Y. Zhang, S. Sun, J. Cai, and L. Hu, “Speeding up MILP aided
differential characteristic search with Matsui’s strategy,” L. Chen,
M. Manulis, and S. Schneider, eds., ISC 2018, volume 11060 of
LNCS, pp.101–115, Springer, 2018.

Appendix A: Lesamnta-LW-BC

The mixing function updates its state in the i-th round as
follows:

X(i+1)
0 = X(i)

3 ⊕G(X(i)
2 , k

(i)), X(i+1)
1 = X(i)

0 ,

X(i+1)
2 = X(i)

1 , X(i+1)
3 = X(i)

2 .

The updating function G is defined as follows:

G(Y, k(i)) := Shuffle(Q(Y0 ⊕ k(i)),Q(Y1)),

where Y = (Y0,Y1) ∈ {0, 1}32×2. For a 4-byte input
(s0, s1, s2, s3) ∈ {0, 1}8×4, Q applies the AES S-box to each
byte and the AES MixColumns in this order. Shuffle is de-
fined as follows: For a 8-byte input s = (s0, s1, . . . , s7) ∈
{0, 1}8×8,

Shuffle(s) := (s4, s5, s2, s3, s0, s1, s6, s7).

In the i-th round, the key schedule function outputs the
round key k(i) ← K(i)

0 and updates its state as follows:

K(i+1)
0 = K(i)

3 ⊕ Q(K(i)
2 ⊕C(i)), K(i+1)

1 = K(i)
0 ,

K(i+1)
2 = K(i)

1 , K(i+1)
3 = K(i)

2 .

We ask readers to refer to the specification in [9] for the
details of the round-constants C(i).

Appendix B: Proof of Theorem 2

It is assumed without loss of generality that the adversary A
does not make trivial queries.

For the game Gr1 described in Fig. A· 1, the oracle R
implements LRFE and the oracles E and D implement the
encryption and the decryption of E, respectively.

The transformation from Gr1 to Gr2 only changes the
functions E and D, which are given in Fig. A· 2. In Gr2,
both E and D choose each reply uniformly at random. Gr2
is equivalent to Gr1 until bad gets true in Gr2. Thus,

|Pr[AGr1 = 1] − Pr[AGr2 = 1]|

Initialization:
100: K ←← {0, 1}n

101: E[W, X]← ⊥ for every (W, X)
102: D[W,Y]← ⊥ for every (W,Y)
103: PW ← {}; CW ← {}

Oracle R(M):
200: M[1]‖M[2]‖ · · · ‖M[m]← M
201: V ← K‖0n . V = V0‖V1, |V0 | = |V1 | = n
202: for 1 ≤ i ≤ m − 1 do
203: V ← E(V0,M0[i]‖(M1[i] ⊕ V1))
204: end for
205: V ← E(V0 ⊕ c,M0[m]‖(M1[m] ⊕ V1))
206: return V

Oracle E(W, X):
300: return E(W, X)

OracleD(W,Y):
400: return D(W,Y)

Function E(W, X):
500: if E[W, X] = ⊥ then
501: Y ←← {0, 1}2n \CW
502: PW ← PW ∪ {X}
503: CW ← CW ∪ {Y}
504: E[W, X]← Y
505: D[W,Y]← X
506: end if
507: return E[W, X]

Function D(W,Y):
600: if D[W,Y] = ⊥ then
601: X ←← {0, 1}2n \ PW
602: PW ← PW ∪ {X}
603: CW ← CW ∪ {Y}
604: E[W, X]← Y
605: D[W,Y]← X
606: end if
607: return D[W,Y]

Fig. A· 1 Game Gr1.

https://dx.doi.org/10.1587/transfun.E101.A.110
https://dx.doi.org/10.1587/transfun.E101.A.110
http://dx.doi.org/10.1007/978-3-030-57808-4_5
http://dx.doi.org/10.1007/978-3-030-57808-4_5
http://dx.doi.org/10.1007/978-3-030-57808-4_5
http://dx.doi.org/10.1007/978-3-030-57808-4_5
http://www.gurobi.com/
http://www.gurobi.com/
http://dx.doi.org/10.1007/978-3-319-39555-5_28
http://dx.doi.org/10.1007/978-3-319-39555-5_28
http://dx.doi.org/10.1007/978-3-319-39555-5_28
http://dx.doi.org/10.1007/978-3-319-39555-5_28
http://dx.doi.org/10.1007/978-3-319-39555-5_28
http://dx.doi.org/10.1007/3-540-48285-7_33
http://dx.doi.org/10.1007/3-540-48285-7_33
http://dx.doi.org/10.1007/3-540-48285-7_33
http://dx.doi.org/10.1007/bfb0053451
http://dx.doi.org/10.1007/bfb0053451
http://dx.doi.org/10.1007/bfb0053451
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.6028/nist.fips.197
http://dx.doi.org/10.6028/nist.fips.197
http://dx.doi.org/10.6028/nist.fips.202
http://dx.doi.org/10.6028/nist.fips.202
http://dx.doi.org/10.6028/nist.fips.202
http://dx.doi.org/10.1145/2810103.2813626
http://dx.doi.org/10.1145/2810103.2813626
http://dx.doi.org/10.1145/2810103.2813626
http://dx.doi.org/10.1007/11693383_18
http://dx.doi.org/10.1007/11693383_18
http://dx.doi.org/10.1007/11693383_18
http://dx.doi.org/10.1007/11693383_18
http://dx.doi.org/10.1007/3-540-45661-9_14
http://dx.doi.org/10.1007/3-540-45661-9_14
http://dx.doi.org/10.1007/3-540-45661-9_14
http://dx.doi.org/10.1007/978-3-540-76900-2_13
http://dx.doi.org/10.1007/978-3-540-76900-2_13
http://dx.doi.org/10.1007/978-3-540-76900-2_13
http://dx.doi.org/10.1007/978-3-319-99136-8_6
http://dx.doi.org/10.1007/978-3-319-99136-8_6
http://dx.doi.org/10.1007/978-3-319-99136-8_6
http://dx.doi.org/10.1007/978-3-319-99136-8_6

HIROSE et al.: UPDATE ON ANALYSIS OF LESAMNTA-LW AND NEW PRF MODE LRF
1317

Function E(W, X):
500: if E[W, X] = ⊥ then
501: Y ←← {0, 1}2n

502: if Y ∈ CW then
503: bad ← true
504: end if
505: PW ← PW ∪ {X}
506: CW ← CW ∪ {Y}
507: E[W, X]← Y
508: D[W,Y]← X
509: end if
510: return E[W, X]

Function D(W,Y):
600: if D[W,Y] = ⊥ then
601: X ←← {0, 1}2n

602: if X ∈ PW then
603: bad ← true
604: end if
605: PW ← PW ∪ {X}
606: CW ← CW ∪ {Y}
607: E[W, X]← Y
608: D[W,Y]← X
609: end if
610: return D[W,Y]

Fig. A· 2 Functions E and D of game Gr2.

Function E(W, X):
500: if E[W, X] = ⊥ then
501: Y ←← {0, 1}2n

502: E[W, X]← Y
503: D[W,Y]← X
504: end if
505: return E[W, X]

Function D(W,Y):
600: if D[W,Y] = ⊥ then
601: X ←← {0, 1}2n

602: E[W, X]← Y
603: D[W,Y]← X
604: end if
605: return D[W,Y]

Fig. A· 3 Functions E and D of game Gr3.

Initialization:
100: PW ← {}; CW ← {}

Oracle R(M):
200: V ←← {0, 1}2n

201: return V

Oracle E(W, X):
300: return E(W, X)

OracleD(W,Y):
400: return D(W,Y)

Function E(W, X):
500: Y ←← {0, 1}2n \CW
501: PW ← PW ∪ {X}
502: CW ← CW ∪ {Y}
503: return Y

Function D(W,Y):
600: X ←← {0, 1}2n \ PW
601: PW ← PW ∪ {X}
602: CW ← CW ∪ {Y}
603: return X

Fig. A· 4 Game Gi1.

≤ Pr[bad gets true in Gr2] ≤
(σ + qe + qd)2

22n+1 . (A· 1)

The transformation from Gr2 to Gr3 also only changes
the functions E and D, which are given in Fig. A· 3. The
changes are minor and

Pr[AGr2 = 1] = Pr[AGr3 = 1]. (A· 2)

For the game Gi1 in Fig. A· 4, the oracle R implements
a function from ({0, 1}2n)+ to {0, 1}2n chosen uniformly at
random and the oracles E and D implement the encryption
and the decryption of E, respectively.

The transformation from Gi1 to Gi2 in Fig. A· 5 only
changes the functions E and D. It is similar to the transfor-
mation from Gr1 to Gr2, and

|Pr[AGi1 = 1] − Pr[AGi2 = 1]|

≤ Pr[bad gets true in Gi2] ≤
(qe + qd)2

22n+1 . (A· 3)

Notice that R makes no call to E in Gi2.
The transformation from Gi2 to Gi3 in Fig. A· 6 only

changes the functions E and D, which makes Initialization

Initialization:
100: PW ← {}; CW ← {}

Oracle R(M):
200: V ←← {0, 1}2n

201: return V

Oracle E(W, X):
300: return E(W, X)

OracleD(W,Y):
400: return D(W,Y)

Function E(W, X):
500: Y ←← {0, 1}2n

501: if Y ∈ CW then
502: bad ← true
503: end if
504: PW ← PW ∪ {X}
505: CW ← CW ∪ {Y}
506: return Y

Function D(W,Y):
600: X ←← {0, 1}2n

601: if X ∈ PW then
602: bad ← true
603: end if
604: PW ← PW ∪ {X}
605: CW ← CW ∪ {Y}
606: return X

Fig. A· 5 Game Gi2.

Oracle R(M):
200: V ←← {0, 1}2n

201: return V

Oracle E(W, X):
300: return E(W, X)

OracleD(W,Y):
400: return D(W,Y)

Function E(W, X):
500: Y ←← {0, 1}2n

501: return Y

Function D(W,Y):
600: X ←← {0, 1}2n

601: return X

Fig. A· 6 Game Gi3.

unnecessary. The changes are minor and

Pr[AGi2 = 1] = Pr[AGi3 = 1]. (A· 4)

The transformation from Gi3 to Gi4 in Fig. A· 7 only
changes R. R in Gi4 implements LRFẼ , where Ẽ is indepen-
dent from E (E and D). It implements Ẽ using Ẽ. R in Gi4
is equivalent to R in Gi3 if the output for each query is cho-
sen uniformly at random. new(M[1, i]) is true if and only is
there exists no previous query M′ such that |M′|/(2n) ≥ i+1
and M′[1, i] = M[1, i]. A collision among inputs to Ẽ causes
bad ← true, and Gi4 is equivalent to Gi3 until bad gets
true in Gi4. Thus,

|Pr[AGi3 = 1] − Pr[AGi4 = 1]|

≤ Pr[bad gets true in Gi4] ≤
σ2

22n+1 +
σ

2n . (A· 5)

The transformation from Gi4 to Gi5 only changes R,
which is given in Fig. A· 8. The changes are minor and

Pr[AGi4 = 1] = Pr[AGi5 = 1]. (A· 6)

The transformation from Gi5 to Gi6 in Fig. A· 9
changes R, E and D. R in Gi6 implements LRFE using the
function E. Gi6 is equivalent to Gi5 if E and D do not receive
repeated queries. Namely, Gi6 is equivalent to Gi5 until bad
gets true in Gi6. The probability that E receives a repeated
query is at most qe/2n + σqe/22n. The probability that D re-
ceives a repeated query is at most qd/2n +σq/22n +σqd/22n.
qd/2n + σq/22n is an upper bound on the probability that

1318
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.9 SEPTEMBER 2021

Initialization:
100: K ←← {0, 1}n

101: Ẽ[W, X]← ⊥ for every (W, X)

Oracle R(M):
200: M[1]‖M[2]‖ · · · ‖M[m]← M
201: V ← K‖0n

202: for 1 ≤ i ≤ m − 1 do
203: if new(M[1, i]) then
204: if Ẽ[V0,M0[i]‖(M1[i] ⊕ V1)] = ⊥ then
205: Ẽ[V0,M0[i]‖(M1[i] ⊕ V1)]←← {0, 1}2n

206: else
207: bad ← true
208: end if
209: end if
210: V ← Ẽ[V0,M0[i]‖(M1[i] ⊕ V1)]
211: end for
212: if Ẽ[V0 ⊕ c,M0[m]‖(M1[m] ⊕ V1)] = ⊥ then
213: Ẽ[V0 ⊕ c,M0[m]‖(M1[m] ⊕ V1)]←← {0, 1}2n

214: else
215: bad ← true
216: end if
217: V ← Ẽ[V0 ⊕ c,M0[m]‖(M1[m] ⊕ V1)]
218: return V

Oracle E(W, X):
300: return E(W, X)

OracleD(W,Y):
400: return D(W,Y)

Function E(W, X):
500: Y ←← {0, 1}2n

501: return Y

Function D(W,Y):
600: X ←← {0, 1}2n

601: return X

Fig. A· 7 Game Gi4.

Oracle R(M):
200: M[1]‖M[2]‖ · · · ‖M[m]← M
201: V ← K‖0n

202: for 1 ≤ i ≤ m − 1 do
203: if Ẽ[V0,M0[i]‖(M1[i] ⊕ V1)] = ⊥ then
204: Ẽ[V0,M0[i]‖(M1[i] ⊕ V1)]←← {0, 1}2n

205: end if
206: V ← Ẽ[V0,M0[i]‖(M1[i] ⊕ V1)]
207: end for
208: if Ẽ[V0 ⊕ c,M0[m]‖(M1[m] ⊕ V1)] = ⊥ then
209: Ẽ[V0 ⊕ c,M0[m]‖(M1[m] ⊕ V1)]←← {0, 1}2n

210: end if
211: V ← Ẽ[V0 ⊕ c,M0[m]‖(M1[m] ⊕ V1)]
212: return V

Fig. A· 8 The oracle R of game Gi5.

there exists a query made by A that collides with a query
made by R for a returned value of R, where σq/22n is an
upper bound on the probability that there exists a returned
value of R that collides with a returned value of E. Thus,

|Pr[AGi5 = 1] − Pr[AGi6 = 1]|
≤ Pr[bad gets true in Gi6]

≤
qe + qd

2n +
σ(q + qe + qd)

22n . (A· 7)

Initialization:
100: K ←← {0, 1}n

101: Ẽ[W, X]← ⊥ for every (W, X)
102: E[W, X]← ⊥ for every (W, X)
103: D[W,Y]← ⊥ for every (W,Y)

Oracle R(M):
200: M[1]‖M[2]‖ · · · ‖M[m]← M
201: V ← K‖0n

202: for 1 ≤ i ≤ m − 1 do
203: if Ẽ[V0,M0[i]‖(M1[i] ⊕ V1)] = ⊥ then
204: Z ← E(V0,M0[i]‖(M1[i] ⊕ V1))
205: Ẽ[V0,M0[i]‖(M1[i] ⊕ V1)]← Z
206: end if
207: V ← Ẽ[V0,M0[i]‖(M1[i] ⊕ V1)]
208: end for
209: if Ẽ[V0 ⊕ c,M0[m]‖(M1[m] ⊕ V1)] = ⊥ then
210: Z ← E(V0 ⊕ c,M0[m]‖(M1[m] ⊕ V1))
211: Ẽ[V0 ⊕ c,M0[m]‖(M1[m] ⊕ V1)]← Z
212: end if
213: V ← Ẽ[V0 ⊕ c,M0[m]‖(M1[m] ⊕ V1)]
214: return V

Oracle E(W, X):
300: return E(W, X)

OracleD(W,Y):
400: return D(W,Y)

Function E(W, X):
500: if E[W, X] = ⊥ then
501: Y ←← {0, 1}2n

502: E[W, X]← Y
503: D[W,Y]← X
504: else
505: bad ← true
506: end if
507: return E[W, X]

Function D(W,Y):
600: if D[W,Y] = ⊥ then
601: X ←← {0, 1}2n

602: E[W, X]← Y
603: D[W,Y]← X
604: else
605: bad ← true
606: end if
607: return D[W,Y]

Fig. A· 9 Game Gi6.

The differences between Gi6 and Gr3 are minor and

Pr[AGi6 = 1] = Pr[AGr3 = 1]. (A· 8)

From (A· 1) to (A· 8),

Advind
LRFE (A) ≤

(σ + qe + qd)2

22n +
σq
22n +

qe + qd

2n .

This completes the proof.

HIROSE et al.: UPDATE ON ANALYSIS OF LESAMNTA-LW AND NEW PRF MODE LRF
1319

Appendix C: Complete MILP Model for 3 Rounds of
Lesamnta-LW-BC

Minimize

x8 + x9 + ... + x30 + x31

Subject To

x8 + x9 + x10 + x11 + y0

+ y1 + y2 + y3 -5 d0 >= 0

d0 - x8 >= 0

d0 - x9 >= 0

d0 - x10 >= 0

d0 - x11 >= 0

d0 - y0 >= 0

d0 - y1 >= 0

d0 - y2 >= 0

d0 - y3 >= 0

x12 + x13 + x14 + x15 + y4

+ y5 + y6 + y7 -5 d1 >= 0

d1 - x12 >= 0

d1 - x13 >= 0

d1 - x14 >= 0

d1 - x15 >= 0

d1 - y4 >= 0

d1 - y5 >= 0

d1 - y6 >= 0

d1 - y7 >= 0

y4 + x0 - x32 >= 0

y4 - x0 + x32 >= 0

- y4 + x0 + x32 >= 0

y5 + x1 - x33 >= 0

y5 - x1 + x33 >= 0

- y5 + x1 + x33 >= 0

y2 + x2 - x34 >= 0

y2 - x2 + x34 >= 0

- y2 + x2 + x34 >= 0

y3 + x3 - x35 >= 0

y3 - x3 + x35 >= 0

- y3 + x3 + x35 >= 0

y0 + x4 - x36 >= 0

y0 - x4 + x36 >= 0

- y0 + x4 + x36 >= 0

y1 + x5 - x37 >= 0

y1 - x5 + x37 >= 0

- y1 + x5 + x37 >= 0

y6 + x6 - x38 >= 0

y6 - x6 + x38 >= 0

- y6 + x6 + x38 >= 0

y7 + x7 - x39 >= 0

y7 - x7 + x39 >= 0

- y7 + x7 + x39 >= 0

x16 + x17 + x18 + x19 + y8

+ y9 + y10 + y11 -5 d2 >= 0

d2 - x16 >= 0

d2 - x17 >= 0

d2 - x18 >= 0

d2 - x19 >= 0

d2 - y8 >= 0

d2 - y9 >= 0

d2 - y10 >= 0

d2 - y11 >= 0

x20 + x21 + x22 + x23 + y12

+ y13 + y14 + y15 -5 d3 >= 0

d3 - x20 >= 0

d3 - x21 >= 0

d3 - x22 >= 0

d3 - x23 >= 0

d3 - y12 >= 0

d3 - y13 >= 0

d3 - y14 >= 0

d3 - y15 >= 0

y12 + x8 - x40 >= 0

y12 - x8 + x40 >= 0

- y12 + x8 + x40 >= 0

y13 + x9 - x41 >= 0

y13 - x9 + x41 >= 0

- y13 + x9 + x41 >= 0

y10 + x10 - x42 >= 0

y10 - x10 + x42 >= 0

- y10 + x10 + x42 >= 0

y11 + x11 - x43 >= 0

y11 - x11 + x43 >= 0

- y11 + x11 + x43 >= 0

y8 + x12 - x44 >= 0

y8 - x12 + x44 >= 0

- y8 + x12 + x44 >= 0

y9 + x13 - x45 >= 0

y9 - x13 + x45 >= 0

- y9 + x13 + x45 >= 0

y14 + x14 - x46 >= 0

y14 - x14 + x46 >= 0

- y14 + x14 + x46 >= 0

y15 + x15 - x47 >= 0

y15 - x15 + x47 >= 0

- y15 + x15 + x47 >= 0

x24 + x25 + x26 + x27 + y16

+ y17 + y18 + y19 -5 d4 >= 0

d4 - x24 >= 0

d4 - x25 >= 0

d4 - x26 >= 0

d4 - x27 >= 0

d4 - y16 >= 0

d4 - y17 >= 0

d4 - y18 >= 0

d4 - y19 >= 0

x28 + x29 + x30 + x31 + y20

+ y21 + y22 + y23 -5 d5 >= 0

d5 - x28 >= 0

d5 - x29 >= 0

d5 - x30 >= 0

d5 - x31 >= 0

d5 - y20 >= 0

d5 - y21 >= 0

d5 - y22 >= 0

d5 - y23 >= 0

y20 + x16 - x48 >= 0

y20 - x16 + x48 >= 0

- y20 + x16 + x48 >= 0

y21 + x17 - x49 >= 0

y21 - x17 + x49 >= 0

- y21 + x17 + x49 >= 0

y18 + x18 - x50 >= 0

y18 - x18 + x50 >= 0

- y18 + x18 + x50 >= 0

y19 + x19 - x51 >= 0

y19 - x19 + x51 >= 0

- y19 + x19 + x51 >= 0

y16 + x20 - x52 >= 0

y16 - x20 + x52 >= 0

- y16 + x20 + x52 >= 0

y17 + x21 - x53 >= 0

y17 - x21 + x53 >= 0

- y17 + x21 + x53 >= 0

y22 + x22 - x54 >= 0

y22 - x22 + x54 >= 0

- y22 + x22 + x54 >= 0

y23 + x23 - x55 >= 0

y23 - x23 + x55 >= 0

- y23 + x23 + x55 >= 0

x0 + x1 + ... + x30 + x31 >= 1

Binary

x0 x1 ... x54 x55

y0 y1 ... y22 y23

d0 d1 d2 d3 d4 d5

End

Fig. A· 10 MILP model for 3 rounds of Lesamnta-LW-BC.

1320
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.9 SEPTEMBER 2021

Shoichi Hirose received the B.E., M.E.
and D.E. degrees in information science from
Kyoto University, Kyoto, Japan, in 1988, 1990
and 1995, respectively. From 1990 to 1998, he
was a research associate at Faculty of Engineer-
ing, Kyoto University. From 1998 to 2005, he
was a lecturer at Graduate School of Informat-
ics, Kyoto University. From 2005 to 2009, he
was an associate professor at Faculty of Engi-
neering, University of Fukui. From 2009, he is
a professor at Graduate School of Engineering,

University of Fukui. His current interests include cryptography and infor-
mation security. He received Young Engineer Award from IEICE in 1997,
and KDDI Foundation Research Award in 2008.

Yu Sasaki received Bachelor of Engineer-
ing and Master of Engineering from The Uni-
versity of Electro-Communications in 2005 and
2007. In 2020, he received Ph.D. degrees from
The University of Electro-Communications, fo-
cusing on the symmetric-key cryptography un-
der the supervision of Kazuo Ohta. Since 2007,
he has been a researcher at NTT Secure Plat-
form Laboratories. His current research in-
terests are in cryptography, including design
and security analysis of symmetric-key crypto-

graphic schemes. He was awarded a paper prize from SCIS 2007, IEICE
Trans. in 2009 and IEICE Trans. in 2018. He also received best paper
awards from IWSEC 2009, SECRYPT 2012, and IWSEC 2012.

Hirotaka Yoshida received the B.S. de-
gree from Meiji University, Japan, in 1999, the
M.S. degree from Tokyo Institute of Technol-
ogy, Japan, in 2001, and the Ph.D. degree in
electrical engineering from KU Leuven, Bel-
gium, in 2013. From 2001 to 2016, he was
with the Research & Development Group, Hi-
tachi, Ltd. He is currently a team leader at the
National Institute of Advanced Industrial Sci-
ence and Technology (AIST). He is a member
of IACR, IPSJ, and JSAE. In 2013, he won the

award of industrial standardization that has been granted by the Japanese
Ministry of Economy, Trade and Industry (METI).

