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PAPER
The PRF Security of Compression-Function-Based MAC Functions
in the Multi-User Setting

Shoichi HIROSE†a), Member

SUMMARY A compression-function-based MAC function called

FMAC was presented as well as a vector-input PRF called vFMAC in

2016. They were proven to be secure PRFs on the assumption that their

compression function is a secure PRF against related-key attacks with re-

spect to their non-cryptographic permutations in the single user setting. In

this paper, it is shown that both FMAC and vFMAC are also secure PRFs in

the multi-user setting on the same assumption as in the single user setting.

These results imply that their security in the multi-user setting does not

degrade with the number of the users and is as good as in the single user

setting.

key words: compression function, MAC, pseudorandom function, multi-

user security, vector-input PRF

1. Introduction

(1) Background.

Message authentication is an important role of cryptography.

A secret-key cryptographic primitive called a MAC function

is used for message authentication. MAC stands for message

authentication code, which is a short sequence called a tag

computed by a MAC function from a message to be authen-

ticated and a secret key. A typical construction of a MAC

function uses a block cipher or a cryptographic hash function

as its building block. This paper deals with construction of

a MAC function using a cryptographic hash function.

HMAC [3] is the most famous and widely deployed

MAC function constructed from a cryptographic hash func-

tion. It was originally designed to be constructed from it-

erated hash functions such as SHA-1, SHA-256 and SHA-

512 [10]. Due to their length extension property, the con-

struction of a MAC function from them is not straightfor-

ward. Roughly, a hash function H is said to have the length

extension property if, for sequences M and M 0, H (M kM 0)
can be computed from H (M) and M 0, where M kM 0 repre-

sents concatenation of M and M 0. Thus, if H has the length

extension property, then, for a secret key K , one can compute

H (K kM kM 0) from H (K kM) and M 0 without knowing K .

To avoid the problem, HMAC has the following structure:

H ((K � opad)kH ((K � ipad)kM)), (1)

where � represents bitwise XOR, ipad and opad are distinct

constants. Since HMAC calls H twice, it is not e�cient for
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Fig. 1 FMAC. F is a compression function. M = M1 kM2 k · · · kMm

.

|M
i

| = w for 1  i  m � 1 and 0  |M
m

|  w.

short messages.

In addition to e�ciency, the other matter to be consid-

ered is security in the multi-user setting. HMAC is shown to

be a secure pseudorandom function (PRF) under reasonable

assumptions [1], [3], [11]. As far as we know, however, the

analyses are only in the single user setting, and the simple

reduction [4] only guarantees the security level degrading

with the number of the users.

FMAC [15] is a recently proposed simple MAC function

composed with a compression function such as those of

SHA-1, SHA-256 and SHA-512. It is depicted in Fig. 1. ⇡1
and ⇡2 are non-cryptographic permutations, and a candidate

for them is addition of some constant. FMAC was shown to

be a secure PRF if its compression function is a secure PRF

against related-key attacks with respect to the permutations

⇡1 and ⇡2. A vector-input PRF, vFMAC, consisting of FMAC

was also proposed and shown to be a secure PRF on the

same assumption [15]. On the other hand, the PRF security

of FMAC and vFMAC was not discussed in the multi-user

setting.

(2) Contribution.

This paper shows that the PRF security of FMAC and vF-

MAC in the multi-user setting is essentially independent of

the number of the users. The PRF security of FMAC and

vFMAC in the multi-user setting can be proved on the same

assumption as in the single user setting. The proofs heavily

use the hybrid argument [13]. In particular, vFMAC is the

first vector-input PRF (vPRF) that is shown to be as secure

in the multi-user setting as in the single user setting.

Actually, the proof of PRF security of FMAC or vFMAC

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers



HIROSE: THE PRF SECURITY OF COMPRESSION-FUNCTION-BASED MAC FUNCTIONS IN THE MULTI-USER SETTING

271

in the multi-user setting is almost the same as the proof in

the single user setting. It is due to an essential property of

the hybrid argument used in the proof: The hybrid argument

is free from the number of the instances (secret keys), and

only the number of the queries matters. It was first revealed

by the proof of PRF security of AMAC in the multi-user

setting [2].

(3) Related Work.

AMAC [2] is a MAC function using a hash function aug-

mented with an unkeyed output function such as truncation

and the mod function. AMAC is more e�cient than HMAC

for short messages as well as FMAC. AMAC is shown to

be a secure PRF if its compression function is a secure PRF

under leakage of the key by the output function. It is also

shown to have as good PRF security in the multi-user setting

as in the single user setting.

Suppose that AMAC and FMAC are instantiated with

(a compression function of) an iterated hash function such

as SHA-1, SHA-256 and SHA-512. The PRF security of

AMAC requires its compression function to be a secure PRF

with two keying strategies, that is, keyed both via initializa-

tion vector (IV) and via message. The PRF security of FMAC

requires its compression function to be a secure PRF keyed

only via IV. FMAC is slightly more e�cient than AMAC

since AMAC takes a secret key as a part of message input and

involves Merkle-Damgård strengthening, while FMAC does

not. On the other hand, AMAC is easier to be implemented

since AMAC can be implemented with a hash function and

FMAC with a compression function. The di�erence may be

smaller than before in some situations, however, since Intel

SHA extensions are now available.

FMAC is based on MDP [14], which was proposed as a

multi-property preserving domain extension. The notion of

multi-property preservation was introduced by Bellare and

Ristenpart [7] together with the first multi-property preserv-

ing domain extension EMD.

HMAC is shown to be a secure PRF if its compression

function is a secure PRF keyed both via IV and via mes-

sage [1]. In addition, the compression function keyed via

IV is required to be a secure PRF against related-key attacks

with respect to ipad and opad.

A variant of HMAC called H2
-MAC was presented

by Yasuda [23]. It is shown to be a secure PRF on the

assumption that its compression function remains a secure

PRF even if a piece of information on the secret key is

disclosed.

Bellare et al. [4] showed that the plain Merkle-Damgård

iteration keyed via IV is a secure PRF against attacks making

prefix-free queries if its compression function is a secure

PRF. They also introduced the notion of multi-user security.

Security of some other symmetric-key schemes are also

analyzed in the multi-user setting: block cipher [16], [17]

and authenticated encryption [9], [18].

Rogaway and Shrimpton introduced the notion of

vPRF [22]. They also presented generic construction of

a vPRF from a usual string-input PRF in the same paper.

Minematsu presented a vPRF using his universal hash func-

tion based on bit rotation [20].

The CBC-MAC variants GCBC1 and GCBC2 [21] fi-

nalize their iteration with multiple non-cryptographic trans-

formations for domain separation.

LightMAC [19] is a new MAC mode of operation for

lightweight block ciphers, which has a similar structure to

vFMAC.

(4) Organization.

Section 2 gives notations and definitions for the remaining

parts of the paper. It is shown in Sect. 3 that the MDP domain

extension produces multiple independent secure PRFs with

multiple secret keys and permutations. Based on this result,

the PRF security of FMAC and vFMAC in the multi-user

setting is analyzed in Sect. 4 and in Sect. 5, respectively.

Section 6 gives a brief concluding remark.

2. Preliminaries

2.1 Notations and Definitions

For integers i1 and i2 such that i1  i2, let [i1, i2] represent

the set of integers between i1 and i2 inclusive.

Let ⌃ , {0, 1}. For a non-negative integer l, let ⌃ l

represent the set of all ⌃ -sequences of length l. Let " be the

⌃ -sequence of length 0. For l � 1, let (⌃ l)⇤ ,
S

i�0 ⌃
li

and (⌃ l)+ , (⌃ l)⇤ \ {"}. For k1  k2, let (⌃ l)[k1,k2] ,S
k2
i=k1
⌃ li

.

For x 2 ⌃ ⇤, let |x | be the length of x. For x, y 2 ⌃ ⇤,
let xk y be the concatenation of x and y .

Let s  S represent that an element s is taken from a

set S in uniform distribution.

Let f : K ⇥ D ! R represent a keyed function from

D to R with its key space K . f (K, ·) is often denoted by

f
K

(·).
Let FD,R or F (D,R) be the set of all functions from

D to R. Let PD be the set of all permutations on D. Let id

represent an identity permutation.

Security requirements of cryptographic primitives or

schemes are usually formalized by their insecurity, that is,

advantage of adversaries against them. An adversary is given

one or more oracles. It makes queries to each of them and

obtains the answers. Without loss of generality, it is assumed

that all the queries made by the adversary to each oracle are

distinct from each other.

2.2 Pseudorandom Functions

A pseudorandom function (PRF) [12] is a keyed function

f : K ⇥ D ! R. The security requirement of a PRF is

defined as follows [5], [8], [12]. An adversary A against

f is given oracle access to f
K

or ⇢, where K  K and

⇢  FD,R , and makes adaptive queries inD and obtains the

corresponding outputs. The prf-advantage of A against f is

defined as
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Advprf
f

(A) , ���Pr[A f

K = 1] � Pr[A⇢ = 1]��� , (2)

where A is regarded as a random variable.

Informally, f is called a secure PRF if any adversary

with realistic computational resources can have only negli-

gible prf-advantage against f .

The definition of the prf-advantage given above is said

to be in the single user setting. The prf-advantage in the

multi-user setting is defined with adversaries given multiple

oracles as follows [4]:

Advm-prf
f

(A) ,
���Pr[AF

K1,...,FK

m = 1] � Pr[A⇢1,...,⇢m = 1]��� , (3)

where K
i

 K and ⇢
i

 FD,R for every i 2 [1,m].
The following proposition relates the PRF security in

the multi-user setting to the PRF security in the single user

setting.

Proposition 1 (Lemma 3.3 in [4]) For any adversary Am
against f with access to m oracles, there exists some ad-

versary As against f such that

Advm-prf
f

(Am)  m · Advprf
f

(As). (4)

The run time of As is approximately total of that of Am and the

time to compute f for the queries made by Am. The number

of the queries made by As is at most max{q
i

| i 2 [1,m]},
where q

i

is the number of the queries from Am to its i-th
oracle.

Remark 1 In this paper, the PRF security in the multi-user

setting is formalized with the multi-oracle families [4]. In

this formalization, the number of the instances is fixed as

a parameter m. In the formalization of [2], on the other

hand, this is not the case: Adversaries are allowed to ask an

oracle to create a new instance as it wishes. The two kinds

of formalization are essentially the same in spite of their

di�erent appearances. This paper adopts the more classical

and simpler formalization.

2.3 PRFs Under Related-Key Attacks

A PRF under related-key attacks is formalized by Bellare

and Kohno [6]. For� ⇢ F (K ,K ), let key 2 F (�⇥K ,K )
be a function such that key(', K ) = '(K ). Let A be an

adversary against f 2 F (K ⇥ D,R). A has oracle access

to g(key(·, K ), ·), where g is either f or ⇢  F (K ⇥D,R),
and K  K . A asks (', x) 2 � ⇥ D as a query and gets

g('(K ), x). Just for simplicity, g[K] , g(key(·, K ), ·). The

prf-rka-advantage of A making a �-related-key attack (�-

RKA) against f is given by

Advprf-rka
�, f (A) , ���Pr[A f [K] = 1] � Pr[A⇢[K] = 1]��� . (5)

The prf-rka-advantage of A making a �-RKA in the

multi-user setting is defined as

Advm-prf-rka
�, f (A) , ��Pr[A f [K1],..., f [K

m

] = 1]�
Pr[A⇢1[K1],...,⇢

m

[K
m

] = 1]��, (6)

where K
i

 K and ⇢
i

 F (K ⇥D,R) for every i 2 [1,m].

3. A PRF Based on MDP

3.1 Definition

The MDP domain extension [14] is a variant of the plain

Merkle-Damgård domain extension. To simplify the nota-

tion, let C , ⌃ n

and B , ⌃w

. Let F : C ⇥ B ! C be

a compression function. A keyed function based on MDP,

JF : C ⇥ PC ⇥ B+ ! C with its key space C, is defined as

follows: For X1, X2, . . . , Xx

2 B with x � 1,

JF (K, ⇡, X1kX2k · · · kXx

) = Y
x

, (7)

where Y0  K and

Y
i

 
8><>:

F(Y
i�1, Xi

) if 1  i  x � 1,
F(⇡(Y

x�1), X
x

) if i = x.
(8)

JF

is depicted in Fig. 2.

JF

makes it unnecessary to introduce the prfs-advantage

in [15]. It is advantage of an adversary in distinguishing mul-

tiple keyed functions sharing a single key from multiple ran-

dom functions, which is di�erent from the m-prf-advantage.

3.2 Security Analysis

Let ⇧ ⇢ PC \ {id}. Let

p⇧ , Pr
"

There exist some distinct ⇡, ⇡0 in

⇧ [ {id} such that ⇡(X ) = ⇡0(X )

#
, (9)

where X is a random variable with uniform distribution over

C.

The following theorem says that JF

is a secure PRF

against adversaries making queries only on the permutations

in ⇧ in the multi-user setting if F is a secure PRF against

(⇧ [ {id})-related-key attacks in the single user setting.

Theorem 1 Let A be any adversary against JF

. Suppose

that A runs in time at most t and makes at most q queries

in ⇧ ⇥ B[1,`]
in total. Then, there exists some adversary B

against F such that

Advm-prf
JF

(A)  `q
⇣
Advprf-rka

⇧[{id },F (B) + p⇧

⌘
. (10)

B runs in time at most t + O(` qT
F

) and makes at most q

Fig. 2 JF (K, ⇡, X1 kX2 k · · · kXx

).
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queries, where T
F

is the time required to compute F.

The upper bound of the prf-advantage of A against JF

presented by Theorem 1 is essentially independent of the

number of the users m. Actually, in the proof of Theorem 1,

B is constructed with A as a subroutine and B should realize,

for each query made by A, which one of the m oracles of A
receives it. In this sense, the prf-rka-advantage of B depends

on m. However, it is not significant.

Theorem 1 is meaningful if the probability p⇧ is suf-

ficiently small, which is not a problem from the following

remark.

Remark 2 ([15]) Let c1, c2, . . . , cd be distinct nonzero con-

stants in C.

• If ⇧ = {⇡
j

| ⇡
j

(x) = x � c
j

for every j 2 [1, d]}, then

p⇧ = 0.

• If ⇧ = {⇡
j

| ⇡
j

(x) = c
j

· x and c
j

, 1 for every j 2
[1, d]}, then p⇧ = 1/2n

.

Theorem 1 follows from Lemma 1 and Lemma 2 pre-

sented in the remaining part. From Remark 2, it is assumed

that the permutations in ⇧ are much easier to be computed

than F in the evaluation of time complexity of adversaries in

Lemma 1 and Lemma 2.

Lemma 1 Let A be any adversary against JF

. Suppose that

A runs in time at most t and makes at most q queries in

⇧ ⇥ B[1,`]
in total. Then, there exists some adversary B

against F such that

Advm-prf
JF

(A)  `
⇣
Advq-prf-rka

⇧[{id },F (B) + qp⇧

⌘
. (11)

B runs in time at most t + O(`qT
F

) and makes at most q
queries in total.

Proof For an integer k � 0 and two functions µ : PC ⇥
B+ ! C and ⇠ : B⇤ ! C, let H[k]µ,⇠ : PC ⇥ B+ ! C
such that, for X = X1kX2k · · · kXl

with |X
i

| = w for every

i 2 [1, l],

H[k]µ,⇠ (⇡, X ) ,
8><>:
µ(⇡, X ) if l  k,

JF (⇠ (X[1,k]), ⇡, X[k+1,l]) otherwise,

(12)

where X[i1,i2] , X
i1 kXi1+1k · · · kXi2 , X[i1,i2] = X

i1 if i1 = i2
and X[i1,i2] = " if i1 > i2.

Let

P
k

, Pr
⇥AH[k]µ1,⇠1,...,H[k]µm,⇠

m

= 1
⇤
, (13)

where µ
i

 FPC⇥B+,C and ⇠
i

 FB⇤,C for every i 2 [1,m].
Then, the advantage of A is

Advm-prf
JF

(A) = |P0 � P` |. (14)

Here, notice that H[0]µi

,⇠
i (⇡, X ) = JF (⇠

i

("), ⇡, X ) and

H[`]µi

,⇠
i (⇡, X ) = µ

i

(⇡, X ) for i 2 [1,m] since l 2 [1, `].

Let B be an adversary against F with q oracles, which

works as follows. B first executes r  [1, `]. Then, B runs

A. Finally, B returns the output of A. A makes at most q
queries to its oracles. B responds to each query made by A
to its oracle in the following way.

For t 2 [1, q], let (⇡, X ) be the t-th query made by A,

where X = X1kX2k · · · kXl

and l 2 [1, `]. Suppose that

(⇡, X ) is given to the i⇤-th oracle of A, where i⇤ 2 [1,m]. If

l � r , then B makes a query to its idx(i⇤, X[1,r�1])-th oracle,

where idx(i⇤, X[1,r�1]) equals the minimum t 0 2 [1, t] such

that

• the t 0-th query (⇡0, X 0) made by A is given to its i⇤-th
oracle, and

• X 0[1,r�1] = X[1,r�1].

The query made by B to its idx(i⇤, X[1,r�1])-th oracle is

(⇡, X
r

) if l = r and (id, X
r

) if l � r +1. Notice that B makes

a (⇧ [ {id})-related-key attack.

Let g1, . . . , gq be the oracles given to B. Then, in

response to the query (⇡, X ) made by A, B returns

• µ
i

⇤ (⇡, X ) if l  r � 1,

• g
idx(i⇤,X[1,r�1]) (⇡, X

r

) if l = r , and

• JF (g
idx(i⇤,X[1,r�1]) (id, X

r

), ⇡, X[r+1,l]) if l � r + 1.

B simulates µ
i

⇤
with the lazy evaluation which selects an

output uniformly at random from C for a new input.

Now, suppose that g
i

= F[K
i

] with K
i

 C for every

i 2 [1, q]. Then,

g
idx(i⇤,X[1,r�1]) (⇡, X

r

) = F⇡ (K
idx(i⇤,X[1,r�1] ) ) (X

r

) (15)

= JF (K
idx(i⇤,X[1,r�1]), ⇡, Xr

) (16)

and

JF (g
idx(i⇤,X[1,r�1]) (id, X

r

), ⇡, X[r+1,l])

= JF (F
K

idx(i⇤,X[1,r�1] ) (X
r

), ⇡, X[r+1,l]) (17)

= JF (K
idx(i⇤,X[1,r�1]), ⇡, X[r,l]). (18)

K
idx(i⇤,X[1,r�1]) implements ⇠

i

⇤ (X[1,r�1]) since K
i

 C for

every i 2 [1, q]. Thus, in this case, B simulates H[r �
1]µ1,⇠1, . . . ,H[r � 1]µm

,⇠
m

for A. Thus,

Pr
⇥BF[K1],...,F[K

q

] = 1
⇤

=
X̀

k=1
Pr
⇥
r = k ^ BF[K1],...,F[K

q

] = 1
⇤

(19)

=
1
`

X̀

k=1
Pr
⇥BF[K1],...,F[K

q

] = 1 �� r = k
⇤

(20)

=
1
`

X̀

k=1
Pr
⇥AH[k�1]µ1,⇠1,...,H[k�1]µm,⇠

m

= 1
⇤

(21)

=
1
`

X̀

k=1
P
k�1. (22)

Suppose that g
i

= ⇢̃
i

with ⇢̃
i

 FPC⇥B,C for every

i 2 [1, q]. Then,
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g
idx(i⇤,X[1,r�1]) (⇡, X

r

) = ⇢̃
idx(i⇤,X[1,r�1]) (⇡, X

r

) (23)

and

JF (g
idx(i⇤,X[1,r�1]) (id, X

r

), ⇡, X[r+1,l])

= JF ( ⇢̃
idx(i⇤,X[1,r�1]) (id, X

r

), ⇡, X[r+1,l]). (24)

⇢̃
idx(i⇤,X[1,r�1]) (⇡, X

r

) implements µ
i

⇤ (⇡, X ) for l = r , and

⇢̃
idx(i⇤,X[1,r�1]) (id, X

r

) implements ⇠
i

⇤ (X[1,r]). Thus, B sim-

ulates H[r]µ1,⇠1, . . . ,H[r]µm

,⇠
m

for A, and

Pr
⇥B⇢̃1,...,⇢̃q = 1

⇤
=

1
`

X̀

k=1
P
k

. (25)

Thus,

���Pr
⇥BF[K1],...,F[K

q

] = 1
⇤ � Pr

⇥B⇢̃1,...,⇢̃q = 1
⇤ ���

=
1
`

Advm-prf
JF

(A). (26)

Now, let ⇢
i

 FC⇥B,C for every i 2 [1, q]. Then,

���Pr
⇥BF[K1],...,F[K

q

] = 1
⇤ � Pr

⇥B⇢̃1,...,⇢̃q = 1
⇤ ���

 ���Pr
⇥BF[K1],...,F[K

q

] = 1
⇤ � Pr

⇥B⇢1[K1],...,⇢
q

[K
q

] = 1
⇤ ���

+
���Pr
⇥B⇢1[K1],...,⇢

q

[K
q

] = 1
⇤ � Pr

⇥B⇢̃1,...,⇢̃q = 1
⇤ ��� (27)

= Advq-prf-rka
⇧[{id },F (B) +

���Pr
⇥B⇢1[K1],...,⇢

q

[K
q

] = 1
⇤ � Pr

⇥B⇢̃1,...,⇢̃q = 1
⇤ ��� . (28)

⇢
i

[K
i

] and ⇢̃
i

are identical to each other as long as ⇡(K
i

) ,
⇡0(K

i

) for any distinct ⇡, ⇡0 2 ⇧ [ {id}. Thus,

���Pr
⇥B⇢1[K1],...,⇢

q

[K
q

] = 1
⇤ � Pr

⇥B⇢̃1,...,⇢̃q = 1
⇤ ���

 qp⇧ . (29)

To answer to the queries made by A, B may compute

JF

or simulate µ
i

’s. It approximately costs at most `q eval-

uations of F. ⇤

For Lemma 1, the single user setting is simply the case

where m = 1. In the proof of Lemma 1, if m = 1, then A is

given a single oracle H[k]µ1,⇠1
and i⇤ always equals 1.

Lemma 2 relates the PRF security of F against related-

key attacks in the multi-user setting with that in the single

user setting. It can be proved in the same way as Proposi-

tion 1.

Lemma 2 ([15]) Let A be any adversary with m oracles

against F running in time at most t, and making at most q
queries. Then, there exists an adversary B against F such

that

Advm-prf-rka
⇧[{id },F (A)  m · Advprf-rka

⇧[{id },F (B). (30)

B runs in time at most t + O(qT
F

) and makes at most q
queries, where T

F

represents the time required to compute

F.

4. FMAC in the Multi-User Setting

FMAC [15] is a MAC function defined with a compression

function F : C ⇥ B ! C and distinct permutations ⇡1, ⇡2 2
PC \ {id}.

The padding function of FMAC is defined as follows:

For any M 2 ⌃ ⇤,

pad(M) ,
8><>:

M if |M | > 0 and |M | ⌘ 0 (mod w),
M k10l if |M | = 0 or |M | . 0 (mod w),

(31)

where l is the minimum non-negative integer such that |M |+
1 + l ⌘ 0 (mod w).

FMAC is defined by CF, {⇡1,⇡2 } : C ⇥ ⌃ ⇤ ! C such that

CF, {⇡1,⇡2 } (K,M) , JF (K, ⇡, pad(M)), where

⇡ =
8><>:
⇡1 if |M | > 0 and |M | ⌘ 0 (mod w),
⇡2 if |M | = 0 or |M | . 0 (mod w).

(32)

The theorem shown below says that CF, {⇡1,⇡2 }
is a se-

cure PRF in the multi-user setting if F is a secure PRF

against {id, ⇡1, ⇡2}-related-key attacks in the single user set-

ting and p{⇡1,⇡2 } is negligibly small. The upper bound of the

prf-advantage of adversaries against FMAC is essentially

independent of the number of the users.

Theorem 2 For any adversary A against CF, {⇡1,⇡2 }
running

in time at most t and making at most q queries in ⌃ [0,`w]
,

there exists some adversary B against F such that

Advm-prf
CF, {⇡1,⇡2 }

(A)

 `q
⇣
Advprf-rka

{id,⇡1,⇡2 },F (B) + p{⇡1,⇡2 }
⌘
. (33)

B runs in time at most t + O(`qT
F

) and makes at most q
queries. T

F

is the time required to compute F.

Theorem 2 is led from the simple lemma given below

and Theorem 1.

Lemma 3 For any adversary A against CF, {⇡1,⇡2 }
running in

time at most t and making at most q queries in ⌃ [0,`w]
, there

exists some adversary Â against JF

such that

Advm-prf
CF, {⇡1,⇡2 }

(A) = Advm-prf
JF

(Â). (34)

Â runs in time at most t and makes at most q queries in

{⇡1, ⇡2} ⇥ B[1,`]
in total.

Proof Â has m oracles g1, . . . , gm, which are ei-

ther JF

K

0
1
, . . . , JF

K

0
m

or ⇢01, . . . , ⇢
0
m

, where K 0
i

 C and

⇢0
i

 F (PC ⇥ B+, C) for every i 2 [1,m].
Â runs A. For a query M made by A to its i⇤-th oracle, Â

makes the following query to its i⇤-th oracle: (⇡1, pad(M)) if

|M | > 0 and |M | ⌘ 0 (mod w) and (⇡2, pad(M)) otherwise.
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Â transfers the reply from the oracle to A. Finally, Â returns

the output of A.

Notice that

Pr
⇥ACF, {⇡1,⇡2 }

K1
,...,CF, {⇡1,⇡2 }

K

m = 1
⇤
=

Pr
⇥Â

JF

K

0
1
,...,JF

K

0
m = 1

⇤
, (35)

where K
i

 C for every i 2 [1,m], and

Pr
⇥A⇢1,...,⇢m = 1

⇤
= Pr
⇥Â⇢01,...,⇢

0
m = 1

⇤
, (36)

where ⇢
i

 F (⌃ ⇤, C) for every i 2 [1,m]. ⇤

5. vFMAC in the Multi-User Setting

vFMAC [15] is a vector-input PRF (vPRF) using FMAC.

Let F : C ⇥ B ! C. For a positive integer d, let ⇧ =
{⇡1, ⇡2, . . . , ⇡2d+2} ⇢ PC \{id}. vFMAC is defined by VF,⇧ :
C ⇥ (⌃ ⇤)[0,d] ! C such that, for an s-component vector

S = (S1, S2, . . . , Ss) with s 2 [0, d],

VF,⇧ (K, S) ,

8><>:
CF, {⇡2d+1,⇡2d+2 }
K

(") if s = 0,

CF, {⇡2d+1,⇡2d+2 }
K

⇣L
s

i=1 CF, {⇡2i�1,⇡2i }
K

(S
i

)
⌘

if s � 1,

(37)

which is also depicted in Fig. 3. vFMAC accepts vectors

with at most d components as inputs, while a vPRF accepts

vectors with any number of components as inputs in the

original formalization [22].

The following theorem says that VF,⇧
is a secure PRF in

the multi-user setting if F is a secure PRF against (⇧ [ {id})-
related-key attacks in the single user setting and p⇧ is negli-

gible. The upper bound of the prf-advantage of adversaries

Fig. 3 vFMAC VF,⇧ (K, S) for S = (S1, S2, . . . , Ss ), where s 2 [0, d].

against vFMAC is also essentially independent of the number

of the users.

Theorem 3 Let A be any adversary against VF,⇧
running in

time at most t and making at most q queries. Suppose that

the length of each vector component in queries is at most `w
and that the total number of the vector components in all of

the queries is at most �(� q � 1). Then, there exists some

adversary B against F such that

Advm-prf
VF,⇧ (A)

 `(� + q)
⇣
Advprf-rka

⇧[{id },F (B) + p⇧

⌘
+

q2

2n+1 . (38)

B runs in time at most t+O(`�T
F

) and makes at most (�+q)
queries. T

F

is the time required to compute F.

Theorem 3 directly follows from Lemma 4 and Theo-

rem 1.

Lemma 4 Let A be any adversary against VF,⇧
running in

time at most t and making at most q queries. Suppose that

the length of each vector component in queries is at most `w
and that the total number of the vector components in all of

the queries is at most �. Then, there exists some adversary

Â against JF

such that

Advm-prf
VF,⇧ (A)  Advm-prf

JF

(Â) +
q2

2n+1 . (39)

Â runs in time at most t and makes at most (� + q) queries

in ⇧ ⇥ B[0,`]
in total.

Proof Notice that Advm-prf
VF,⇧ (A) is

����Pr
⇥AVF,⇧

K1
,...,VF,⇧

K

m = 1
⇤ � Pr[A⇢1,...,⇢m = 1]

���� , (40)

where K
i

 C and ⇢
i

 F ((⌃ ⇤)[0,d], C) for every i 2
[1,m].

Let V̂JF

K

i

be an algorithm to compute VF,⇧
K

i

by using JF

K

i

.

Then,

Advm-prf
VF,⇧ (A) 

���Pr
⇥AV̂

JF

K1 ,...,V̂JF

K

m

= 1
⇤ � Pr

⇥AV̂µ1,...,V̂µ
m

= 1
⇤ ���

+
���Pr
⇥AV̂µ1,...,V̂µ

m

= 1
⇤ � Pr[A⇢1,...,⇢m = 1]���, (41)

where µ
i

 F (PC ⇥ B+, C) and V̂µ
i

is obtained from V̂JF

K

i

simply by replacing JF

K

i

with µ
i

for every i 2 [1,m].
For the first term of the upper bound of Eq. (41), there

exists some adversary Â such that

Advm-prf
JF

(Â) =

���Pr
⇥AV̂

JF

K1 ,...,V̂JF

K

m

= 1
⇤ � Pr

⇥AV̂µ1,...,V̂µ
m

= 1
⇤ ���, (42)

and Â runs in time at most t and makes at most (� + q)
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queries in ⇧ ⇥ B[0,`]
in total.

For the second term of the upper bound of Eq. (41), let

us consider an algorithm R which works as the m oracles of

A as follows:

1. Prior to the interaction with A,

• Y
t, j  ? for every t 2 [1, q] and j 2 [1, d],

• Z
t

 C for every t 2 [1, q], and

• bad  0.

2. During the interaction with A, return Z
t

in response to

the t-th query made by A.

3. For t 2 [1, q], let S
t

= (S
t,1, St,2, . . . , St,s

t

) be the t-th
query made by A, where s

t

2 [0, d]. Let i(t) indicate

the oracle receiving the t-th query. Namely, A asks S
t

to its i(t)-th oracle. For every j 2 [1, s
t

],

• Y
t, j  C if S

t, j is new, that is, S
t, j , S

t

0, j for any

t 0 < t such that i(t 0) = i(t), and

• Y
t, j  Y

t

0, j if there exists some t 0 < t such that

i(t 0) = i(t) and S
t, j = S

t

0, j .

4. bad  1 if, for some distinct t1 and t2 in [1, q], i(t1) =
i(t2) and

s

t1M

j=1
Y
t1, j =

s

t2M

j=1
Y
t2, j . (43)

Since R is identical to ⇢1, . . . , ⇢m, Pr[AR = 1] =
Pr[A⇢1,...,⇢m = 1]. As long as bad = 0, R is also identi-

cal to V̂µ1, . . . , V̂µ
m

. Notice that, for distinct t1 and t2 in

[1, q] such that i(t1) = i(t2),

Pr
 s

t1M

j=1
Y
t1, j =

s

t2M

j=1
Y
t2, j

�
 1

2n
. (44)

Thus,

����Pr
⇥AV̂µ1,...,V̂µ

m

= 1
⇤ � Pr[A⇢1,...,⇢m = 1]

����


mX

i=1

q
i

(q
i

� 1)
2n+1  q2

2n+1 , (45)

where q
i

is the number of the queries to the i-th oracle and

q1 + · · · + q
m

 q. ⇤

6. Conclusion

In this paper, the PRF security of FMAC and vFMAC in

the multi-user setting is reduced to that of their compression

function against related-key attacks with respect to their non-

cryptographic permutations in the single user setting. This

result shows that the PRF security of FMAC and vFMAC in

the multi-user setting is as good as in the single user setting.

Future work is to evaluate the security of other PRFs

and vPRFs in the multi-user setting.
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