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A Pseudorandom-Function Mode Based on Lesamnta-LW and the
MDP Domain Extension and Its Applications

Shoichi HIROSE†a), Member, Hidenori KUWAKADO††, Senior Member, and Hirotaka YOSHIDA†††, Member

SUMMARY This paper discusses a mode for pseudorandom functions
(PRFs) based on the hashing mode of Lesamnta-LW and the domain exten-
sion called Merkle-Damgård with permutation (MDP). The hashing mode
of Lesamnta-LW is a plain Merkle-Damgård iteration of a block cipher
with its key size half of its block size. First, a PRF mode is presented
which produces multiple independent PRFs with multiple permutations and
initialization vectors if the underlying block cipher is a PRP. Then, two
applications of the PRF mode are presented. One is a PRF with minimum
padding. Here, padding is said to be minimum if the produced message
blocks do not include message blocks only with the padded sequence for
any non-empty input message. The other is a vector-input PRF using the
PRFs with minimum padding.
key words: compression function, MAC, provable security, pseudorandom
function, vector-input PRF

1. Introduction

1.1 Background

Apseudorandom function (PRF) is one of themost important
elements in cryptography. Informally, it is a keyed function
indistinguishable from a random function if the key is chosen
uniformly at random and kept secret. It is often used as a
function for message authentication (MAC function). It is
also used for pseudorandom number generation. A PRF is
usually constructed using a block cipher or a cryptographic
hash function. We are interested in the latter approach.

Continuing advances of pervasive computing have
greatly been increasing the demand for security of devices
with constrained resources. To answer to such demand,
for cryptographic hash functions, the international standard
ISO/IEC 29192-5 [22] has been published, which includes
three lightweight hash functions: PHOTON [18], SPON-
GENT [15] and Lesamnta-LW [19].

In the coming IoT era, many “things” will get connected
to the internet and wewill enjoy the great amount of benefits,
while the risk of cyber attacks will be significantly increased.
Examples of the fastest evolving IoT systems can be seen in
automotive industry and smart factory (Industry 4.0). Re-
cently, for vehicles, remote software update attracts a lot
of attention, and therefore, the international standard ITU-T
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Fig. 1 HMAC. H is a cryptographic hash function. K is a secret
key. M is an input message. ⊕ represents bitwise XOR operation.
‖ represents concatenation of sequences. ipad = 0x3636 · · · 36 and
opad = 0x5c5c · · · 5c.

SG17 [1] referring to ISO/IEC 29192-5 has been published.
To ensure security for IoT devices such as electronic con-
trol units in a vehicle, cryptographic solutions such as PRFs
need to be lightweight in terms of implementation resources,
especially for short messages.

HMAC [5] is a widely deployed MAC function con-
structed from a cryptographic hash function. HMAC is de-
fined with a hash function H as follows:

HMAC(K, M) = H ((K ⊕opad)‖H ((K ⊕ipad)‖M)) ,

where K is a secret key, M is an input message, ‖ rep-
resents concatenation, ⊕ represents bitwise XOR, ipad =
0x3636 · · · 36 and opad = 0x5c5c · · · 5c. It is also de-
picted in Fig. 1.

Due to the length extension property of standardized
hash functions such as SHA-1, SHA-256 and SHA-512 [16],
HMAC invokes the underlying hash function twice. The
drawback of this structure is inefficiency for short mes-
sages. Such inefficiency may also come from the padding of
the underlying hash function based on the Merkle-Damgård
strengthening.

1.2 Our Contribution

This paper discusses a keyed mode based on the hash-
ing mode of Lesamnta-LW and the MDP domain exten-
sion [20], which is depicted in Fig. 2. It is first shown that
the keyed mode produces multiple independent PRFs with
multiple permutations and initialization vectors if the under-
lying block cipher is a PRP. Then, two applications of the
mode are presented. First, a PRF with minimum padding
is presented. We say that padding is minimum if the pro-
duced message blocks do not include message blocks only
with the padded sequence for any non-empty input message.

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers
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Fig. 2 A keyed mode based on Lesamnta-LW and the MDP domain ex-
tension. E is the underlying block cipher, K is a secret key, IV is an
initialization vector, and π is a permutation. The input of E from the top is
its key input.

Second, a vector-input PRF (vPRF) is constructed using the
PRFs with minimum padding. A vPRF is a PRF which takes
as input a vector of strings. The presented vPRF is an in-
stantiation of the protected counter sum construction [10]
with a variable-input-length PRF based on Lesamnta-LW
and MDP.

The basic idea to obtain multiple independent PRFs
using the MDP domain extension is from the precedent pa-
per [21] as well as its two applications described above. It
is shown that the keyed mode in [21] may produce multi-
ple PRFs if the underlying compression function is a PRF
against related-key attacks with respect to the permutations
used in the mode. On the other hand, by adjusting the idea in
[21] to the hashing mode of Lesamnta-LW, we show that our
keyed mode does not require the security against related-key
attacks of the underlying block cipher.

1.3 Related Work

It is shown that HMAC is a PRF if the compression function
of the underlying hash function is a PRF with respect to two
keying strategies [3]. In particular, for one of the keying
strategies, the compression function is required to be a PRF
against related key attacks with respect to ipad and opad.

Yasuda [33] presented a secure HMAC variant without
the second key, which is called H2-MAC. It is shown to be
a PRF on the assumption that the underlying compression
function is a PRF even if an adversary is allowed to obtain a
piece of information on the secret key.

AMAC [4] is a MAC function using a hash function
encapsulated with an unkeyed output function. Typical can-
didates for the output function are truncation and the mod
function. AMAC is more efficient than HMAC especially
for short messages. It is shown that AMAC is a PRF if
the underlying compression function remains a PRF under
leakage of the key by the output function.

Various PRF modes of a compression function are also
known. The plainMerkle-Damgård cascade is a PRF against
adversariesmaking prefix-free queries if the underlying com-
pression function is a PRF [6]. In the context of multi-
property preservation [8], PRF modes such as EMD [8] and
MDP [20] are proposed. Yasuda’s PRF mode of a compres-
sion function in [29] is shown to be a PRF if the underlying
compression function is a PRF against a kind of related key
attacks. Sandwich construction for an iterated hash function
is shown to produce a PRF if the underlying compression
function is a PRF with respect to two keying strategies [30].

PRF modes using keyed compression functions were
also proposed. The first proposal was XORMAC [7], which
was followed by the protected counter sum construction [10].
It is shown that various hashing modes preserve the PRF se-
curity of keyed compression functions [9]. Yasuda proposed
PRF modes for keyed compression functions with security
beyond birthday [31], [32], [34], [35].

The most related schemes to our proposal are re-
cent keyed sponge constructions [2], [11], [12], [17] and
Chaskey [25]. The advantage of our proposal over them is
that the PRF property of our proposal requires a weaker se-
curity assumption on the underlying primitive. The keyed
sponge constructions are shown to be indistinguishable from
a uniform random function in the ideal permutation model,
that is, on the assumption that the underlying permutation is
chosen uniformly at random. Chaskey is also shown to be in-
distinguishable from a uniform random function in the ideal
permutation model. Chaskey-B is shown to be a PRF if the
underlying block cipher is a PRP against related key-attacks.

Minimum padding is already common among block-
cipher-based MAC functions such as CMAC [27] and
PMAC [14]. CMAC, which is based on OMAC (One-key
CBC-MAC) [23], originated from XCBC [13]. The idea to
finalize the iteration with multiple permutations is used in
the secure CBC-MAC variants GCBC1 and GCBC2 [26].

Rogaway and Shrimpton [28] introduced the notion of
vPRF. They also presented a generic scheme to construct a
vPRF from a common PRF taking a single string as input.
Minematsu [24] also proposed a vPRF using his universal
hash function based on bit rotation.

1.4 Organization

Section 2 gives notations and definitions used in the remain-
ing parts of the paper. It is shown in Sect. 3 that the keyed
mode based on Lesamnta-LW and MDP may produce multi-
ple independent PRFs with multiple permutations and mul-
tiple initialization vectors. Based on the result in Sect. 3, the
PRF with minimum padding and the vPRF are presented and
their security is confirmed in the manner of provable security
in Sect. 4 and Sect. 5, respectively. Section 6 concludes the
paper.

2. Preliminaries

2.1 Notations and Definitions

Let Σ = {0, 1}. For any non-negative integer l, Σ l is iden-
tified with the set of all Σ -sequences of length l. Σ 0 is
the set of the empty sequence ε. Let (Σ l)∗ =

⋃
i≥0(Σ l)i

and (Σ l)+ =
⋃

i≥1(Σ l)i . For k1 ≤ k2, let (Σ l)[k1,k2] =⋃k2
i=k1

(Σ l)i .
For x ∈ Σ ∗, the length of x is denoted by |x |. The

concatenation of x1 and x2 in Σ ∗ is denoted by x1‖x2.
The operation of selecting element s from set S uni-

formly at random is denoted by s ←← S.
Let f : K × D → R be a family of functions from D
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to R indexed by keys inK . Then, f (K, ·) is a function from
D to R for each key K ∈ K . f (K, x) is often denoted by
fK (x).

Let F(D,R) denote the set of all functions from D to
R. Let P(D) denote the set of all permutations on D. id
represents an identity permutation. LetC (κ, n) be the set of
all block ciphers with key size κ and block size n. A block
cipher in C (κ, n) is called a (κ, n) block cipher.

Let Π ⊂ P (D). We say that Π is pairwise everywhere
distinct if, for any pair of distinct permutations π, π′ ∈ Π ,
π(x) , π′(x) for every x ∈ D.

2.2 Pseudorandom Functions and Permutations

For f : K × D → R, let A be an adversary trying to
distinguish fK from a function ρ, where K and ρ are chosen
uniformly at random from K and F (D,R), respectively. A
is given access to fK or ρ as an oracle and makes adaptive
queries in D and obtains the corresponding outputs. The
prf-advantage of A against f is defined as

Advprf
f

(A) = ���Pr
[
AfK = 1

]
− Pr

[
Aρ = 1

] ��� ,

where K ←← K and ρ ←← F (D,R). The prp-advantage of
A against f is defined as

Advprp
f

(A) = ���Pr
[
AfK = 1

]
− Pr

[
Aρ = 1

] ��� ,

where K ←← K and ρ ←← P (D). In these notations, adver-
sary A is regarded as a random variable.

f is called a pseudorandom function (permutation), or
PRF (PRP) in short, if no efficient adversary A can have any
significant prf-advantage (prp-advantage) against f .

The definitions of the prf- and prp-advantage can natu-
rally be extended to adversaries with multiple oracles. The
prf-advantage of adversary A with access to m oracles is
defined as

Advm-prf
f

(A) =
���Pr[AFK1,FK2,...,FKm = 1] − Pr[Aρ1,ρ2,...,ρm = 1]��� ,

where (K1, K2, . . . , Km) ←← K m and (ρ1, ρ2, . . . , ρm) ←←
F (D,R)m. Advm-prp

f
can be defined similarly.

The following lemma is a paraphrase of Lemma 3.3 in
[6]:

Lemma 1 Let A be any adversary against f with access to
m oracles. Then, there exists an adversary B against f such
that

Advm-prf
f

(A) ≤ m · Advprf
f

(B) .

The run time of B is approximately total of that of A and
the time required to compute f to answer to the queries
of A. The number of the queries made by B is at most
max{qi | 1 ≤ i ≤ m}, where qi is the number of the queries
made by A to its i-th oracle.

Fig. 3 The hashing mode of Lesamnta-LW.

Fig. 4 JE, π (Y0, X1 ‖X2 ‖ · · · ‖Xx ).

2.3 The Hashing Mode of Lesamnta-LW and Its Variant
with MDP

The hashing mode of Lesamnta-LW [19] is given in Fig. 3. It
is the plain Merkle-Damgård iteration of a block cipher E in
C (n/2, n), where n is a positive even integer. The input of E
from the top is its key input. IV0‖IV1 ∈ Σ

n is an initialization
vector, where |IV0 | = |IV1 | = n/2. M1, M2, . . . , Mm are
message blocks, where Mi ∈ Σ

n/2 for i = 1, 2, . . . ,m.
Now, let us introduce the variant of the hashing mode of

Lesamnta-LW with the MDP domain extension [20]. Here-
after, it is assumed that the underlying block cipher E is in
C (w, n), where w < n. The MDP variant with a permuta-
tion π on Σ n−w is the function JE,π : Σ n × (Σ w )+ → Σ n,
which is defined as follows: For X1, X2, . . . , Xx ∈ Σ w and
Y0 ∈ Σ

n,

JE,π (Y0, X1‖X2‖ · · · ‖Xx ) = Yx

such that

Yi ←



EYi−1,0 (Xi ‖Yi−1,1) (1 ≤ i ≤ x − 1)
EYi−1,0 (Xi ‖π(Yi−1,1)) (i = x) ,

where Yj = Yj,0‖Yj,1 ∈ Σ n and |Yj,0 | = w for 0 ≤ j ≤ x. It
is depicted in Fig. 4. As it will be seen later, π need not be a
cryptographic primitive. Thus, the computational overhead
of π can be small.

3. Multiple PRFs based on Lesamnta-LW

In this section, it is shown that the MDP variant of the
Lesamnta-LW hashing mode may produce multiple inde-
pendent PRFs with a single secret key using multiple per-
mutations and initialization vectors.

Let JE,π
IV : Σ w × (Σ w )+ → Σ n be a keyed function

such that JE,π
IV (K, X ) = JE,π (K ‖IV, X ), where K ∈ Σ w ,

IV ∈ Σ n−w and X ∈ (Σ w )+. K is a secret key and IV is an
initialization vector. JE,π

IV (K, ·) is also denoted by JE,π
IV,K (·).

For Π ⊂ P (Σ n−w ) andV ⊂ Σ n−w , let

JE,Π
V
=

{
JE,π
IV

��� IV ∈ V ∧ π ∈ Π
}
.
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Let V = {IVi | 1 ≤ j ≤ a} and Π = {πj | 1 ≤ j ≤ d}.
Let A be an adversary against JE,Π

V
. The advantage of A is

defined by

Advprfs
JE,Π
V

(A) =

�����
Pr

[
A
〈
J

E, π j
IVi ,K

〉1≤ j≤d
1≤i≤a = 1

]
− Pr

[
A〈ρi, j〉

1≤ j≤d
1≤i≤a = 1

] �����

for K ←← Σ w and
〈
ρi, j

〉1≤ j≤d

1≤i≤a
←← F ((Σ w )+, Σ n)a×d , where

〈
JE,πj

IVi,K

〉1≤ j≤d

1≤i≤a
=(

JE,π1
IV1,K

, JE,π2
IV1,K

, . . . , JE,πd
IV1,K

, JE,π1
IV2,K

, . . . , JE,πd
IVa,K

)
and 〈

ρi, j
〉1≤ j≤d

1≤i≤a
=

(
ρ1,1, ρ1,2, . . . , ρ1,d, ρ2,1, . . . , ρa,d

)
.

Notice that the setting is different from that of PRF for an
adversary with multiple oracles in Sect. 2.2. Only a single
key K is used for

〈
JE,πj

IVi,K

〉1≤ j≤d

1≤i≤a
.

The following theorem states that JE,Π
V

produces multi-
ple independent PRFs with a single key if E is a PRP.

Theorem 1 Let V ⊂ Σ n−w and Π ⊂ P (Σ n−w ). Sup-
pose that Π ∪ {id} is pairwise everywhere distinct and that
π(IV ) , π′(IV ′) for any π, π′ ∈ Π ∪ {id} and IV, IV ′ ∈ V
such that (π, IV ) , (π′, IV ′). Let A be any adversary against
JE,Π
V

running in time at most t and making at most q queries
in total. Suppose that each query consists of at most ` blocks.
Then, there exists an adversary B against E such that

Advprfs
JE,Π
V

(A) ≤ `q · Advprp
E (B) +

`q(q − 1)
2n+1 .

B runs in time at most t + O(`qTE), and makes at most q
queries. TE is the time required to compute E.

Remark 1 Let tv and tp be integers such that tv+ tp = n−w.
Let V = {IV1, IV2, . . . , IVa} and Π = {π1, π2, . . . , πd }. Let
v1, v2, . . . , va be distinct constants in Σ tv . Let c1, c2, . . . , cd be
distinct nonzero constants in Σ tp . Suppose that IVi = vi ‖0tp
for 1 ≤ i ≤ a and that πj (x) = x ⊕ (0tv ‖cj ) for 1 ≤ j ≤ d.
Then,

• Π ∪ {id} is pairwise everywhere distinct, and
• since πj (IVi) = vi ‖cj , πj (IVi) , πj′ (IVi′ ) if (i, j) ,

(i′, j ′).

Theorem 1 immediately follows from Lemma 2 and
Lemma 3.

Lemma 2 Let V ⊂ Σ n−w and Π ⊂ P (Σ n−w ). Sup-
pose that Π ∪ {id} is pairwise everywhere distinct and that
π(IV ) , π′(IV ′) for any π, π′ ∈ Π ∪ {id} and IV, IV ′ ∈ V
such that (π, IV ) , (π′, IV ′). Let A be any adversary against
JE,Π
V

running in time at most t and making at most q queries

in total. Suppose that each query consists of at most ` blocks.
Then, there exists an adversary B against E with access to q
oracles such that

Advprfs
JE,Π
V

(A) ≤ ` · Advq-prf
E (B) .

B runs in time at most t + O(`qTE), and makes at most q
queries. TE is the time required to compute E.

Proof Let V = {IV1, IV2, . . . , IVa} and Π = {π1, π2,
. . . , πd }. Let X = X1‖X2‖ · · · ‖Xx , where 1 ≤ x ≤ `
and |Xi | = w for 1 ≤ i ≤ x. For 1 ≤ i1 ≤ i2 ≤ x, let
X[i1,i2] = Xi1 ‖Xi1+1‖ · · · ‖Xi2 . For l ∈ {0, 1, . . . , `} and two
functions µ : (Σ w )[1,`] → Σ n and ξ : (Σ w )[0,`−1] → Σ n,
let R[l]E,π

µ,ξ : (Σ w )[1,`] → Σ n be a function such that

R[l]E,π
µ,ξ (X ) =




µ(X ) if x ≤ l,
JE,π (ξ (X[1,l]), X[l+1,x]) if x ≥ l + 1,

where X[1,l] = ε if l = 0. We define

Pl = Pr
[
A

〈
R[l]

E, π j
µi, j , ξi

〉1≤ j≤d

1≤i≤a = 1
]
,

where (µ1,1, . . . , µa,d) ←← F ((Σ w )[1,`], Σ n)a×d and

ξi (X[1,l]) =



K ‖IVi if l = 0
ξ̃i (X[1,l]) otherwise

for K ←← Σ w and (ξ̃1, . . . , ξ̃a) ←← F ((Σ w )[1,`−1], Σ n)a.
Then, the advantage of A is

Advprfs
JE,Π
V

(A) = |P0 − P` | .

The algorithm of an adversary B against E with q or-
acles is described below. Let (g1, . . . , gq) be the oracles of
B. They are either (EK1,EK2, . . . ,EKq ) or (ρ1, ρ2, . . . , ρq)
such that (K1, . . . , Kq) ←← (Σ n)q and (ρ1, . . . , ρq) ←←
F (Σ n, Σ n)q , respectively. B uses A as a subroutine.

1. B selects r from {1, . . . , `} uniformly at random.

2. If r ≥ 2, then B selects functions ( µ̃1,1, . . . , µ̃a,d) from
F ((Σ w )[1,r−1], Σ n)a×d uniformly at random. Actually,
B simulates µ̃i, j with lazy evaluation.

3. B runs A. Finally, B outputs the output of A.

For 1 ≤ k ≤ q and 1 ≤ x ≤ `, let X = X1‖X2‖ · · · ‖
Xx be the k-th query made by A during the execution of A.
Suppose that X is a query to the (i, j)-th oracle of A. If x ≥ r ,
then B makes a query to the idx(k)-th oracle gidx(k) , where
idx : {1, . . . , q} → {1, . . . , q} is a function defined below:

• If r = 1, then idx(k) = 1 for 1 ≤ k ≤ q.
• If r ≥ 2, then

– idx(k) = idx(k ′) if there exists a previous k ′-th
query X ′ (k ′ < k) such that it is a query to the
(i, j ′)-th oracle for some 1 ≤ j ′ ≤ d and X ′[1,r−1] =
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X[1,r−1], and
– idx(k) = k otherwise.

For the query to the idx(k)-th oracle, B also chooses ν(k) as
follows:

• If r = 1, then ν(k) = IVi .
• If r ≥ 2, then ν(k) = ν(k ′) if idx(k) = idx(k ′) for some

k ′ < k and ν(k) ←← Σ n−w if idx(k) = k.

The query made by B is (Xr ‖πj (ν(k))) if x = r and
(Xr ‖ν(k)) if x ≥ r + 1. The answer of B to X is




µ̃i, j (X ) if x ≤ r − 1,
gidx(k) (Xr ‖πj (ν(k))) if x = r ,
JE,πj (gidx(k) (Xr ‖ν(k)), X[r+1,x]) if x ≥ r + 1.

Now, suppose that B is given (EK1, . . . ,EKq ) as oracles.
Then, the answer of B to X is




µ̃i, j (X ) if x ≤ r − 1,
EKidx(k ) (Xr ‖πj (ν(k))) if x = r ,
JE,πj (EKidx(k ) (Xr ‖ν(k)), X[r+1,x]) if x ≥ r + 1.

If r = 1, then idx(k) = 1 and ν(k) = IVi for 1 ≤ k ≤ q.
If r ≥ 2, then Kidx(k) ‖ν(k) is chosen uniformly at random
from Σ n for a new pair of i and X[1,r−1]. Thus, B provides A
with the oracle R[r − 1]E,πj

µi, j,ξi
, and

Pr
[
BEK1,...,EKq = 1

]

=
∑̀
u=1

Pr
[
r = u ∧ BEK1,...,EKq = 1

]

=
1
`

∑̀
u=1

Pr
[
BEK1,...,EKq = 1 ��� r = u

]

=
1
`

∑̀
u=1

Pr
[
A
〈
R[u−1]

E, π j
µi, j , ξi

〉1≤ j≤d
1≤i≤a = 1

]

=
1
`

∑̀
u=1

Pu−1 .

Suppose that B is given oracles (ρ1, . . . , ρq). Then, the
answer of B to X is




µ̃i, j (X ) if x ≤ r − 1,
ρidx(k) (Xr ‖πj (ν(k))) if x = r ,
JE,πj (ρidx(k) (Xr ‖ν(k)), X[r+1,x]) if x ≥ r + 1.

If r = 1, then idx(k) = 1 and ν(k) = IVi for 1 ≤ k ≤ q.
The functions in {ρ1(·‖π(IV )) | π ∈ Π ∪ {id}, IV ∈ V}
are independent of each other since π(IV ) , π′(IV ′) for
any π, π′ ∈ Π ∪ {id} and IV, IV ′ ∈ V such that (π, IV ) ,
(π′, IV ′). If r ≥ 2, then idx(k) is fixed only by (i, X[1,r−1])
and ν(k) is chosen uniformly at random only when idx(k) =
k. In addition, Π ∪ {id} is pairwise everywhere distinct.
Thus, B provides A with the oracle R[r]E,πj

µi, j,ξi
, and

Pr[Bρ1,...,ρq = 1] =
1
`

∑̀
i=1

Pi .

Thus,

Advq-prf
E (B)

=
���Pr

[
BEK1,...,EKq = 1

]
− Pr

[
Bρ1,...,ρq = 1

] ���

=

������

1
`

∑̀
i=1

Pi−1 −
1
`

∑̀
i=1

Pi

������
=
|P0 − P` |

`

=
1
`

Advprfs
JE,Π
V

(A) .

There may exist an adversary with the same amounts of
resources as B and larger advantage. Let us call it B again.

�

Lemma 3 (Lemma 3 of [19]) Let A be any adversary with
m oracles against E running in time at most t, and making at
most q queries. Then, there exists an adversary B against E
such that

Advm-prf
E (A) ≤ m · Advprp

E (B) +
q(q − 1)

2n+1 .

B runs in time at most t + O(qTE ) and makes at most q
queries, where TE represents the time required to compute
E.

4. PRF with Minimum Padding

Based on the result in the previous section, a PRF mode with
minimum padding is proposed and its security is confirmed
in this section. Then, the proposed scheme is compared with
two PRF modes based on Lesamnta-LW in [19] in terms of
efficiency.

4.1 The Proposed Scheme

The padding function used in the proposed construction is
defined as follows: For any M ∈ Σ ∗,

pad(M) =



M if |M | > 0 and |M | ≡ 0 (mod w)
M ‖10t if |M | = 0 or |M | . 0 (mod w) ,

where t is the minimum non-negative integer such that |M |+
1 + t ≡ 0 (mod w). In particular, pad(ε) = 10w−1.

For any M , | pad(M) | is the minimum positive multiple
of w, which is greater than or equal to |M |. Let pad(M) =
M̄1‖M̄2‖ · · · ‖M̄m, where |M̄i | = w for every i such that
1 ≤ i ≤ m. m = 1 if |M | = 0, and m = d|M |/we if |M | > 0.
M̄i is called the i-th block of pad(M).

The proposed function LE, {π1,π2 }
IV : Σ w × Σ ∗ → Σ n

based on Lesamnta-LW and MDP is defined by

LE, {π1,π2 }
IV (K, M) =
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JE,π1
IV,K (pad(M)) if |M | > 0 and |M | ≡ 0 (mod w)

JE,π2
IV,K (pad(M)) if |M | = 0 or |M | . 0 (mod w).

LE, {π1,π2 }
IV is shown to be a PRF if the underlying block

cipher E is a PRP.

Theorem 2 Let IV ∈ Σ n−w . Let {π1, π2} ⊂ P (Σ n−w ) and
suppose that {π1, π2, id} is pairwise everywhere distinct. Let
A be any adversary against LE, {π1,π2 }

IV running in time at most
t and making at most q queries in total. Suppose that the
length of each query is at most ` w. Then, there exists an
adversary B against E such that

Advprf

L
E, {π1, π2 }
IV

(A) ≤ `q · Advprp
E (B) +

`q(q − 1)
2n+1 .

B runs in time at most t + O(`qTE), and makes at most q
queries. TE is the time required to compute E.

Proof Let Â be an adversary against JE,π1
IV , JE,π2

IV using
A as a subroutine. Let (h1, h2) be the oracles of Â.
Then, (h1, h2) are either (JE,π1

IV,K, J
E,π2
IV,K ) with K ←← Σ w or

(ρ1, ρ2) ←← F ((Σ w )+, Σ n).
Â simply runs A. Let M be a query made by A. If

|M | > 0 and |M | ≡ 0 (mod w), then Â returns h1(pad(M))
to A. Otherwise, Â returns h2(pad(M)) to A. Finally, Â
outputs the output of A. The run time of Â is almost equal
to that of A and A makes at most q queries in total.

Notice that

Pr
[
ÂJE, π1

IV ,K ,J
E, π2
IV ,K = 1

]
= Pr

[
AL

E, {π1, π2 }
IV ,K = 1

]
and

Pr
[
Âρ1,ρ2 = 1

]
= Pr

[
Aρ = 1

]
,

where ρ←← F (Σ ∗, Σ n). Thus, from Theorem 1, there exists
an adversary B against F such that

Advprf

L
E, {π1, π2 }
IV

(A) = Advprfs

JE, {π1, π2 }
IV

( Â)

≤ `q · Advprp
E (B) +

`q(q − 1)
2n+1 .

B runs in time at most t + O(`qTE), and makes at most q
queries. �

Remark 2 A PRF with minimum padding can also be con-
structed with a single permutation and two distinct initial-
ization vectors. However, LE, {π1,π2 }

IV is much better than this
construction. For the PRF with a single permutation and two
distinct initialization vectors, users have to know the length
of an input message in advance since it determines which
initialization vector should be chosen.

4.2 Discussion

In [19], the authors presented two PRF modes based on

Lesamnta-LW, which are called a keyed-via-IV (KIV) mode
and a key-prefix (KP) mode.

Let n = 256 and w = 128 for JE,π , as is speci-
fied for Lesamnta-LW. Let padL is the padding function of
Lesamnta-LW and IVL ∈ Σ 256 is the initialization vector
of Lesamnta-LW. Let chop : Σ 256 → Σ 128 be the func-
tion which simply outputs the latter half of the input. Then,
the KIV mode of Lesamnta-LW is chop(JE,π (K, padL(M)))
and the KP mode is chop(JE,π (IVL, padL(K ′‖M))), where
K ∈ Σ 256 and K ′ ∈ Σ 128 are secret keys and M ∈ Σ ∗ is a
message input of length at most 264 − 1.

For X ∈ Σ ∗ such that |X | ≤ 264 − 1, padL(X ) =
X ‖10t+63‖ len64(X ), where len64(X ) is the 64-bit binary rep-
resentation of |X | and t is the minimum non-negative integer
such that |X | + t ≡ 0 (mod 128).

Suppose that input M is not the empty sequence. Then,
the number of invocations of E is d|M |/128e + 1 for the KIV
mode, d|M |/128e + 2 for the KP mode, and d|M |/128e for
the proposed mode LE, {π1,π2 }

IV . Thus, LE, {π1,π2 }
IV is the most

efficient, especially for short messages.
The advantage of the KP mode is that it uses the hash

function Lesamnta-LW as it is.
The output of LE, {π1,π2 }

IV is twice as long as those of the
KIV mode and the KP mode. It may be advantageous when
used for pseudorandom bit generation.

5. Vector-Input PRF

5.1 The Proposed Scheme

A scheme is proposed to construct a vector-input PRF (vPRF)
using instances of the PRF presented in Sect. 4. In the orig-
inal formalization [28], a vPRF accepts vectors with any
number of components as inputs. In contrast, the proposed
scheme has a parameter which specifies the maximum num-
ber of the components in an input vector.

Let a be a positive integer, which is the maximum
number of the components in an input vector. Let Π =
{π1, π2} ⊂ P (Σ n−w ) and V = {IV0, IV1, . . . , IVa} ⊂ Σ n−w .
The proposed vector-input function based on Lesamnta-LW
vLE, {π1,π2 }
V

: Σ w × (Σ ∗)[0,a] → Σ n is defined as follows: For
an s-component vector (S1, . . . , Ss) such that 0 ≤ s ≤ a,

vLE, {π1,π2 }
V

(K, (S1, S2, . . . , Ss))

=




LE, {π1,π2 }
IV0

(K, ε) if s = 0,

LE, {π1,π2 }
IV0

(
K,

s⊕
i=1

LE, {π1,π2 }
IVi

(K, Si)
)
if s ≥ 1.

It is shown that vLE, {π1,π2 }
V

is a vPRF if E is a PRP.

Theorem 3 Let V = {IV0, IV1, . . . , IVa} ⊂ Σ n−w . Let
{π1, π2} ⊂ P (Σ n−w ) and suppose that {π1, π2, id} is pair-
wise everywhere distinct. Let A be any adversary against
vLE, {π1,π2 }
V

running in time at most t and making at most q
queries. Suppose that the length of each vector component
in queries is at most `w and the total number of the vector
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components in all of the queries is at most σ. Then, there
exists an adversary B against E such that

Advprf

vLE, {π1, π2 }
V

(A) ≤ `(σ + q) Advprp
E (B)+

`(σ + q)(σ + q − 1) + q(q − 1)
2n+1 .

B runs in time at most t +O(`(σ+ q)TE), and makes at most
(σ + q) queries. TE is the time required to compute E.

Theorem 3 directly follows from Lemmas 4 and 5.

Lemma 4 Let V = {IV0, IV1, . . . , IVa} ⊂ Σ n−w . Let
{π1, π2} ⊂ P (Σ n−w ) and suppose that {π1, π2, id} is pair-
wise everywhere distinct. Let A be any adversary against
vLE, {π1,π2 }
V

running in time at most t and making at most q
queries. Suppose that the length of each vector component
in queries is at most `w and the total number of the vector
components in all of the queries is at most σ. Then, there
exists an adversary B against

{
LE, {π1,π2 }
IVi

�� 0 ≤ i ≤ a
}
such

that

Advprf

vLE, {π1, π2 }
V

(A) ≤

Advprfs{
L

E, {π1, π2 }
IVi

�� 0≤i≤a
} (B) +

q(q − 1)
2n+1 .

B runs in time at most t and makes at most (σ + q) queries
in total. The length of each query is at most `w.

Proof Notice that

Advprf

vLE, {π1, π2 }
V

(A) =

����Pr
[
AvLE, {π1, π2 }

V,K = 1
]
− Pr[Aρ = 1]

���� ,

where K ←← Σ w and ρ←← F ((Σ ∗)[0,a], Σ n).
Let ρi : Σ ∗ → Σ n for 0 ≤ i ≤ a. Let Qρ0,...,ρa :

(Σ ∗)[0,a] → Σ n be a vector-input function such that

Qρ0,...,ρa (S1, . . . , Ss) =



ρ0(ε) if s = 0,
ρ0

(⊕s
i=1 ρi (Si)

)
if s ≥ 1.

Qρ0,...,ρa is obtained from vLE, {π1,π2 }
V,K

simply by replacing
LE, {π1,π2 }
IVi,K

with ρi for 0 ≤ i ≤ a. Then,

Advprf

vLE, {π1, π2 }
V

(A) ≤

����Pr
[
AvLE, {π1, π2 }

V,K = 1
]
− Pr

[
AQρ0, . . .,ρa

= 1
] ����+

���Pr
[
AQρ0, . . .,ρa

= 1
]
− Pr[Aρ = 1]��� , (1)

where K ←← Σ w , (ρ0, . . . , ρa) ←← F (Σ ∗, Σ n)a+1 and ρ ←←
F ((Σ ∗)[0,a], Σ n).

For the first term of the upper bound of Eq. (1), let
B be an adversary against

{
LE, {π1,π2 }
IVi

�� 0 ≤ i ≤ a
}
. Let

(g0, g1, . . . , ga) be the oracles given to B, which are either

(
LE, {π1,π2 }
IV0,K

, LE, {π1,π2 }
IV1,K

, . . . , LE, {π1,π2 }
IVa,K

)
or (ρ0, ρ1, . . . , ρa). B

runs A. For each query (S1, S2, . . . , Ss) by A, B returns
g0(ε) if s = 0 and g0

(⊕s
i=1 gi (Si)

)
if s ≥ 1. Finally, B

outputs the output of A. Thus,

����Pr
[
AvLE, {π1, π2 }

V,K = 1
]
− Pr

[
AQρ0, . . .,ρa

= 1
] ���� =

Advprfs{
L

E, {π1, π2 }
IVi ,K

�� 0≤i≤a
} (B) .

The run time of B approximately equals that of A. The
number of queries made by B to its oracles is at most (σ+q)
and the length of each query is at most `w.

For the second term of the upper bound of Eq. (1), let
R be the oracle of A such that

1. Prior to the interaction with A,

• Yi, j ← ⊥ for 1 ≤ i ≤ q and 1 ≤ j ≤ a,
• Zi ←← Σ n for 1 ≤ i ≤ q, and
• bad ← 0.

2. During the interactionwith A, return Zi to the i-th query
made by A.

3. For 1 ≤ i ≤ q, let Si = (Si,1, Si,2, . . . , Si,si ) be the i-th
query made by A, where 0 ≤ si ≤ a. For 1 ≤ j ≤ si ,

• Yi, j ←← Σ n if Si, j is new, that is, Si, j , Si′, j for any
i′ such that i′ < i, and

• Yi, j ← Yi′, j if Si, j is not new.

4. bad ← 1 if, for some distinct i and i′,
si⊕
j=1

Yi, j =
si′⊕
j=1

Yi′, j .

Since R is identical to ρ, Pr
[
AR = 1

]
= Pr [Aρ = 1].

As long as bad = 0, R is also identical to Qρ0,...,ρa . Notice
that

Pr
[ si⊕
j=1

Yi, j =
si′⊕
j=1

Yi′, j

]
≤

1
2n

.

Thus,

���Pr
[
AQρ0, . . .,ρa

= 1
]
− Pr[Aρ = 1]��� ≤

q(q − 1)
2n+1 .

�

Lemma 5 Let V = {IV0, IV1, . . . , IVa} ⊂ Σ n−w . Let
{π1, π2} ⊂ P (Σ n−w ) and suppose that {π1, π2, id} is pair-
wise everywhere distinct. Let A be any adversary against{
LE, {π1,π2 }
IVi

�� 0 ≤ i ≤ a
}
running in time at most t and making

at most q queries in total. Suppose that the length of each
query is at most `w. Then, there exists an adversary B against
E such that

Advprfs{
L

E, {π1, π2 }
IVi

��0≤i≤a
} (A) ≤
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`q Advprp
E (B) +

`q(q − 1)
2n+1 .

B runs in time at most t + O(`qTE), and makes at most q
queries. TE is the time required to compute E.

Proof Let Â be an adversary against
{
JE,π1
IV0

, JE,π2
IV0

,

JE,π1
IV1

, . . . , JE,π1
IVa

, JE,π2
IVa

}
using A as a subroutine. Â is given ac-

cess to 2(a + 1) oracles (h0,1, h0,2, h1,1, h1,2, . . . , ha,1, ha,2),
which are either

(
JE,π1
IV0,K

, JE,π2
IV0,K

, JE,π1
IV1,K

, . . . , JE,π1
IVa,K

, JE,π2
IVa,K

)
with K ←← Σ w or ( ρ̂0,1, ρ̂0,2, ρ̂1,1, . . . , ρ̂a,1, ρ̂a,2) ←←
F ((Σ w )+, Σ n)2(a+1) .

Â simply runs A. Let M be a query made by A to its
i-th oracle for 0 ≤ i ≤ a. If |M | > 0 and |M | ≡ 0 (mod w),
then Â returns hi,1(pad(M)) to A. Otherwise, Â returns
hi,2(pad(M)) to A. Finally, Â outputs the output of A. The
run time of Â is almost equal to that of A and Â makes at
most q queries in total.

Notice that

Pr
[
ÂJE, π1

IV0,K
,JE, π2

IV0,K
,...,JE, π2

IVa ,K = 1
]
=

Pr
[
AL

E, {π1, π2 }
IV0,K

,...,L
E, {π1, π2 }
IVa ,K = 1

]
,

Pr
[
Âρ̂0,1,ρ̂0,2,...,ρ̂a,2 = 1

]
= Pr[Aρ0,...,ρa = 1] ,

where (ρ0, . . . , ρa) ←← F (Σ ∗, Σ n)a+1. Thus, from Theo-
rem 1, there exists an adversary B against F such that

Advprfs{
L

E, {π1, π2 }
IVi

�� 0≤i≤a
} (A) ≤

`q Advprp
E (B) +

`q(q − 1)
2n+1 .

B runs in time at most t + O(`qTE), and makes at most q
queries. �

5.2 Discussion

Some generic constructions of vPRF using any string-input
PRF such as S2V [28] and S2V-R [24] can also be applied to
LE, {π1,π2 }
IV . S2V and S2V-R require finite fieldmultiplications

and bit rotations, respectively, as well as bitwise XOR oper-
ations. On the other hand, vLE, {π1,π2 }

V
only requires bitwise

XOR operations if the permutations π1 and π2 are bitwise
XOR operations with constants.

vLE, {π1,π2 }
V

can be regarded as an instantiation of the pro-
tected counter sum construction with a variable-input-length
PRF. It is not a straightforward application, however, in that
vLE, {π1,π2 }
V

does not require any encoding of an input to add
counter values. The domain separation and the ordering of
vector components are achieved by the initialization vectors
inV .

6. Conclusion

This paper has first presented a PRF mode based on

Lesamnta-LW and MDP which may produce multiple inde-
pendent PRFs with a single key and multiple permutations
and initialization vectors. Then, it has used this mode to
construct a PRF with minimum padding and a vector-input
PRF. It is expected that the proposed PRF mode will find
some other applications. Future work is to provide security
analysis for the proposed schemes in multi-user settings.
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