A Note on Aggregate MAC Schemes

Shoichi Hirose! Junji Shikata®

LUniversity of Fukui, Japan

2Yokohama National University, Japan

13/11/2018
ASK 2018, Kolkata

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018)

Introduction

Message authentication code (MAC)

Sender Receiver
(Alh tl)

ti=Fe(M) (af, 1) = Fx(M)?

Aggregate MAC [Katz, Lindell 2008]
® |nspired by aggregate signature

® Generate an aggregate tag for multiple messages

T + Aggregate((My, I1,t1), ..., (My, I, t,))

Check the validity of messages in a single verification w.r.t. T’

Reduce the amount of storage and/or communication

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 2/33

Two Flavours of Aggregation

(Non-sequential) aggregation: The order does not matter

(My,11,t1)

(My,Io,ty) ——=
- T

Agg

(]V[THIH‘/tn)

Often T «+ Agg(tl, to,... ,tn)

Sequential aggregation: The order matters

(My,I)
(My,I) (Ma,I>)
(M, I); Ty (My,15); Ts (Ms3,13); T3
GG G

Called history-free if T; < SeqAggy. (M;,1;,T;-1)

J

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 3/33

Topics of This Talk
® Application of non-adaptive group-testing to aggregate MAC
® Sequential aggregate MAC

Related Work
¢ (Non-sequential) Aggregate MAC
® Katz, Lindell (2008)
® Sequential aggregate MAC
® Eikemeier, Fischlin, et al. (2010)
® Forward-secure sequential aggregate MAC (for secure logging)

® Schneier and Kelsey (1999)
® Ma and Tsudik (2007)
® Hirose and Kuwakado (2014)

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 4/33

@ Non-adaptive Group Testing Aggregate MAC

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-1

Aggregate MAC

® Generate an aggregate tag for multiple messages
T « Aggregate((My, I1,t1), ..., (My, I, t,))

® Check the validity of messages in a single verification w.r.t. T'

® |f valid, all messages are OK.
® Otherwise, some are invalid, but we can't see which.

Problem: Identify the invalid messages with fewer than n agg. tags

Our solution: Apply group testing to aggregate MAC

Two types of group testing
® Non-adaptive: All tests are chosen in advance

® Adaptive: A new test can be chosen after the current test

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 6/33

Non-adaptive Group Testing

Specified by a binary matrix (Group-testing matrix):

sl s2 s3 s4
testl1 /1 1 0 O
test2| 1 O 1 O
test3\0 1 1 1

® 51, s2, s3, and s4 are samples.
® Each sample is either negative or positive.
® The result of a test is
® negative <= All the involved samples are negative
® positive <= Some of the involved samples are positive
® |dentify the positive samples with (# of tests) < (# of samples)

Assumption: # of positive samples is upper-bounded

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 7/33

d-disjunct GT Matrix

Definition (GT matrix G is d-disjunct)
1 Gjas.» there exists some i s.t.

For any (d + 1) columns g;,,gjs, - - -
® i-th coordinate of g;, Vg, V---V gj, is 0

® i-th coordinate of g;, , is 1

d-disjunctness guarantees: (# of positive samples) < d =

each negative sample is included in a test only with negative samples

Non-adaptive group testing based on d-disjunct GT matrix
® identifies all the positive samples if (# of them) < d
® All samples involved in negative tests are negative.

® All the remaining samples are positive.

ASK 2018 (13-16/11/2018)

A Note on Aggregate MAC Schemes

S. Hirose (Univ. Fukui)

® Syntax
® Security requirements
® Unforgeability
® |dentifiability: Completeness and soundness

Generic construction

Two instantiations

Analysis of provable security

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 9/33

Related Work

Agregate MAC for multiple users [Katz-Lindell 08]

® Formalized the syntax and security requirement

® Proposed scheme: For (M, 11), (Ma, Is), ..., (M, I,),
* t; = MAC(Kj, M;)
® The aggregatetagisT =t1 ®to®--- Dty

® Proved the security

Application of group-testing to MAC [Goodrich et al. 05], [Minematsu 15]
® Both of them assumes a single-user setting

® Tag aggregate requires a secret key

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 10/33

Aggregate MAC: Syntax

Aggregate MAC (AM) consists of the following algorithms:
Key generation K < KG(17P)
® p is a security parameter
Tagging t < Tag(Ky, M, I)
Aggregate T « Agg((M1, I1,t1),...,(My, I, t,))

® Secret keys are not used
e Often T < Agg(t1,...,tn)

Verification d « Ver((K1, ..., Ky), (M1, 1h), ..., (M, I,,)),T)
® The decision d is either T (valid) or L (invalid)

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 11/33

Aggregate MAC: Security Requirement

The security requirement is unforgeability

An adversary A against AM is given access to the following oracles:
Tagging receives (M,) and returns tag t < Tag(Ky, M, I)

Corrupt receives I and returns K

Verification receives (((M1,11),...,(My,I,)),T) and returns d € {T, L}

Advil,(A) £ Pr[A succeeds in forgery]
AdefM (A) should be negligibly small for any efficient A

A succeeds in forgery if A asks Q = (((My,11),...,(My,1,)),T) to VO
satisfying the following conditions:

® () is judged valid
® A asks neither (M;, ;) to TO nor I; to CO for 35 before @

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 12/33

Group-Testing Aggregate (GTA) MAC

GTA MAC scheme using a u X n group-testing matrix
Key generation K <+ KG(1?)
Tagging t < Tag(Ky, M,I)
Group-testing aggre (T4,...,T,) < GTA((M1, I1,t1),...,(My, I, t,))
® Secret keys are not used
® An aggregate tag is produced for each test
Group-testing verif
J+— GTV((Ky,...,K), (M1, L), ...,(Mp, I,)), (T1, ..., Ty))
® Jis aset of (M), I)'s judged invalid

Security requirements
® Unforgeability
® |dentifiability
® Completeness: GTV judges any valid (M, I,t) to be valid
® Soundness: GTV judges any invalid (M, 1,t) to be invalid

S. Hirose (Univ. Fukui)

A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018)

13/33

Unforgeability (1/2)

An adversary A against GTAM is given access to the oracles:
Tagging receives (M, I) and returns t < Tag(Ky, M, T)
Corrupt receives I and returns K

Group-testing verification

receives (((My,I1),...,(My, I,)), (T, ...,Ty)) and
returns the set of invalid (M, I;)'s J

The advantage of A against GTAM w.r.t. unforgeability
AdviEiam(A) 2 Pr[A succeeds in forgery]

Adviay(A) should be negligibly small for any efficient A

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 14 /33

Unforgeability (2/2)

A succeeds in forgery if A asks GTVO a query

Q = (((M17[1)7 R (Mn; In))ﬂ (Th ceey Tu))

satisfying that there exists some (M, I;) s.t.
® (M;j,I;) is judged valid by GTVO
® A asks neither (M, I;) to 7O nor I; to CO before asking @

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 15/33

Identifiability: Completeness and Soundness

An adversary A is given access to the following oracles:
Tagging receives (M, I) and returns t < Tag(Ky, M, I)
Corrupt receives I and returns K

Group-testing receives Q = (M1, I1,t1),...,(Mp, In,t,))

@ applies group testing to)
@® returns the result

The advantage of A against GTAM w.r.t.
® completeness

Advi&m(A) £ Pr[GT O judges some valid (M;, I;,t;) invalid]
® soundness
AdviFam(A) £ Pr[GT O judges some invalid (M;, I;,t;) valid]

Both advantages should be negligibly small for any efficient A

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018)

16 /33

Generic Construction

Generic GTA MAC using
® Aggre MAC AM = (KG, Tag, Agg, Ver)
® GT matrix G

Key generation KG
Tagging Tag
Group-testing aggre (T1,...,T,) < GTA(t1,...,tn)
1 t2 t3 t4
Ty < Agg(tl, tg) 1 1 0 0
Ty Agg(tl, tg) 1 0 1 0
13 + Agg(tg, ts, t4) 0 1 1 1

Group-testing verif For (M1, 11),...,(Mn, I,,)), (T1,...,Ty.)),
@ t; — Tag(K;, Mj, 1) for 1 <j<n
® (11,....T)) < GTA(t},....t)
© For 1 <i <uw, if T; =T}, all the involved (Mj, I;)'s are valid
@ Remaining (M, I;)'s are invalid

ASK 2018 (13-16/11/2018) 17 /33

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes

Unforgeability of Generic Construction

Generic GTA MAC is UF <= Underlying Aggre MAC is UF

For any A against GTAM, there exists some B against AM s.t.

Adviiram, (A) < Adviiy(B)

A B
Run time <s <s
Tagging queries | <q < q
Corrupt queries | < q. < qc
Verif queries <qy < ugy

ASK 2018 (13-16/11/2018) 18/33

A Note on Aggregate MAC Schemes

S. Hirose (Univ. Fukui)

Identifiability of Generic Construction

Generic GTA MAC satisfies completeness <—
® GTA matrix is d-disjunct
® Each query to GT O contains at most d invalid (M}, I;,t;)'s

Theorem (Completeness)

Advifia, (A) =0

Generic GTA MAC does not necessarily satisfy soundness

® Unforgeability guarantees weak soundness

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 19/33

Two Instantiations

Two instantiations for group-testing aggregate:
® Based on Katz-Lindell AMAC: T +t1 ®to @ --- Dty
® Based on cryptographic hashing: T« H(t1,ta,...,t,)

Security

® Both satisfy unforgeability and completeness
® For soundness:
® GTA MAC based on Katz-Lindell does not satisfy soundness

Eg.) Let (My,11,t1) and (Ma, I2,t2) be valid tuples
The group test for invalid tuples
(M, I, t1 @ ¢) and (Ma, Iz, t2 © ¢)

gets valid since t; & to = (t1 B ¢) ® (t2 B ¢)
® GTA MAC using hashing for aggregate satisfies soundness

<= H is a random oracle

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 20/33

® Sequential Aggregate MAC

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018)

[Eikemeier, Fischlin, et al. 2010] proposed two schemes:
® Using CMAC
® Generic scheme using PRF F and PRP P

M, M, M,

Our question:
® PRP is indispensable?
® Simpler construction?

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 22/33

Sequential aggregate MAC (SAM) consists of the following algorithms:

Key generation K < KG(17P)

Sequential Aggregate Tagging T « STag(Ky, M,I,T")
e T’ is called an aggregate-so-far tag

Verification d < SVer((K1, ..., K,), (M1, 11),...,(My, 1)), T)
® Decisiond € {T, L}

My, I Ms, Iy M, 1,
To—v STagg, al STagg, Lo STagg — Ty

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 23/33

Security Requirement (1/2)

The security requirement of SAM is unforgeability

An adversary A against SAM is given access to the following oracles:
Seq agg tagging returns aggregate tag T for query (M, I),T’
Corrupt returns Ky for query I

Verification returns d € {T, L} for query ((My,11),...,(My,I,)), T,

A is allowed to make multiple queries adaptively to each oracle
The advantage of A against SAM is

Advi(A) £ Pr[A succeeds in forgery]

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 24 /33

Security Requirement (2/2)

A succeeds in forgery if A asks the verification oracle a query

Q = (((MI; Il): SRR (an In))u Tn)

satisfying the following conditions:
® () is judged valid
® There exists some j € [1,n] s.t.
® A does not ask (Mj,Ij,Tj{_l) to the seq agg tagging oracle
® A does not ask [; to the corrupt oracle
before ()

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 25/33

The First Proposed Scheme

Using PRF F and PRP G

® Suitable for a block cipher

Sequential Aggregate Tagging T; = G, (a,,1,)(Ti-1)

My, I Moy, 1o
| |
Kl - F KQ —> F
Ty—™a "G

T

Ty

G

Tnfl

Uses the “tag” of a message by F' as a secret key of G for aggregate

S. Hirose (Univ. Fukui)

A Note on Aggregate MAC Schemes

ASK 2018 (13-16/11/2018) 26 /33

G Should Be a PRP (1/2)

Suppose that G is a secure PRF with a weak key wL s.t.

GuL(T) = aT for any T

Then, the following attack always succeeds in forgery:
@ Ask I to the corrupt oracle and obtain Ko.
® Compute My s.t. Fg,(Ma, Is) = wL.
© (((My,1),(Ms,I5)),aT) is a successful forgery for any (M, 1)

My, I Moy, Iy
| |
Kl - F KQ —> F
wL
T

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 27/33

G Should Be a PRP (2/2)

With knowledge of Ky, it is easy to compute (Ms, I3) = F[};(wL)
e if F'is a block cipher
e if F'is CMAC

) D W /
\ D SP) D K

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018)

The Second Proposed Scheme (Naive Scheme)

Sequential Aggregate Tagging T; = Hg,(T;—1, M;, I;)

MILIl MA[,»I2 MEI,l
T, H Hl— Hl—T,
- T3 I
K, Ky K,

Question: Security requirement for H?

® Notice that K;'s can be corrupted

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 29/33

Security requirement for H (1/2)

Sufficient conditions:
® H keyed via K is PRF, and

® H keyed via T is PRF under some leakage of 1" due to verification

M,I

.

T—»H—»

o CMAC does not satisfy the requirement
® HMAC seems OK

The naive scheme may be suitable for a hash function

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 30/33

Security requirement for H (2/2)

CMAC is not PRF if keyed via T’
T

|~

Ex Ex Ex Ex

U
)
N
U
Y
N
A

HMAC

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 31/33

Intuitive Idea of Unforgeability Proof

My, I Moy, I M3, 13 My, 1y

s I I

T T:
T,— H—~H{2—~H Hf——~
} } } }
K Ky K3 Ky
TQ/A_‘? Té—»—? Ti—»—?

® (M, I, Ty) is new and K3 is not corrupted = T5 is random

® Verification only leaks equality to given T}

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 32/33

Conclusion

Application of Non-adaptive group-testing to aggregate MAC
® Formalization of syntax and security requirements
® Generic construction and two instantiations

Sequential aggregate MAC
® A scheme for a block cipher

® A scheme for a hash function

Other work
® Application of adaptive group-testing to aggregate MAC

Future work

e Efficient verification algorithm of d-disjunctness of GT matrix

® Security analysis of the naive scheme using CMAC for seq agg MAC

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 33/33

	Non-adaptive Group Testing Aggregate MAC
	Sequential Aggregate MAC

