A Note on Aggregate MAC Schemes

Shoichi Hirose¹ Junji Shikata²

¹University of Fukui, Japan

²Yokohama National University, Japan

13/11/2018 ASK 2018, Kolkata

A Note on Aggregate MAC Schemes

Introduction

Message authentication code (MAC)

Sender
$$(M_1, t_1)$$
 Receiver
 $t_i = F_K(M_i)$ (M_2, t_2) $t_i = F_K(M_i)$?
 \vdots

Aggregate MAC [Katz, Lindell 2008]

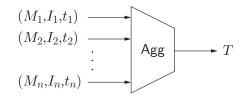
- Inspired by aggregate signature
- · Generate an aggregate tag for multiple messages

$$T \leftarrow \mathsf{Aggregate}((M_1, I_1, t_1), \dots, (M_n, I_n, t_n))$$

- Check the validity of messages in a single verification w.r.t. \boldsymbol{T}
- Reduce the amount of storage and/or communication

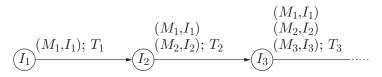
Two Flavours of Aggregation

(Non-sequential) aggregation: The order does not matter



Often $T \leftarrow \mathsf{Agg}(t_1, t_2, \ldots, t_n)$

Sequential aggregation: The order matters



Called history-free if $T_j \leftarrow \mathsf{SeqAgg}_{K_i}(M_j, I_j, T_{j-1})$

Topics of This Talk

- Application of non-adaptive group-testing to aggregate MAC
- Sequential aggregate MAC

Related Work

- (Non-sequential) Aggregate MAC
 - Katz, Lindell (2008)
- Sequential aggregate MAC
 - Eikemeier, Fischlin, et al. (2010)
- Forward-secure sequential aggregate MAC (for secure logging)
 - Schneier and Kelsey (1999)
 - Ma and Tsudik (2007)
 - Hirose and Kuwakado (2014)

1 Non-adaptive Group Testing Aggregate MAC

2 Sequential Aggregate MAC

Motivation

Aggregate MAC

Generate an aggregate tag for multiple messages

 $T \leftarrow \mathsf{Aggregate}((M_1, I_1, t_1), \dots, (M_n, I_n, t_n))$

- Check the validity of messages in a single verification w.r.t. \boldsymbol{T}
 - If valid, all messages are OK.
 - Otherwise, some are invalid, but we can't see which.

Problem: Identify the invalid messages with fewer than n agg. tags Our solution: Apply group testing to aggregate MAC

Two types of group testing

- Non-adaptive: All tests are chosen in advance
- Adaptive: A new test can be chosen after the current test

Non-adaptive Group Testing

Specified by a binary matrix (Group-testing matrix):

	s1	s2	s3	s4
test1	(1	1	0	0 \
test2	1	0	1	0
test3	0	1	1	1/

- s1, s2, s3, and s4 are samples.
- Each sample is either negative or positive.
- The result of a test is
 - negative \iff All the involved samples are negative
 - positive \iff Some of the involved samples are positive
- Identify the positive samples with (# of tests) < (# of samples) Assumption: # of positive samples is upper-bounded

Definition (GT matrix G is d-disjunct)

For any (d+1) columns $g_{j_1}, g_{j_2}, \ldots, g_{j_{d+1}}$, there exists some i s.t.

- *i*-th coordinate of $g_{j_1} \lor g_{j_2} \lor \cdots \lor g_{j_d}$ is 0
- *i*-th coordinate of $oldsymbol{g}_{j_{d+1}}$ is 1

d-disjunctness guarantees: (# of positive samples) $\leq d \implies$

each negative sample is included in a test only with negative samples

Non-adaptive group testing based on d-disjunct GT matrix

- identifies all the positive samples if $(\# \text{ of them}) \leq d$
- All samples involved in negative tests are negative.
- All the remaining samples are positive.

Agenda

- Syntax
- Security requirements
 - Unforgeability
 - Identifiability: Completeness and soundness
- Generic construction
- Two instantiations
- Analysis of provable security

Related Work

Agregate MAC for multiple users [Katz-Lindell 08]

- Formalized the syntax and security requirement
- Proposed scheme: For $(M_1, I_1), (M_2, I_2), \dots, (M_n, I_n)$,
 - $t_j = \mathsf{MAC}(K_j, M_j)$
 - The aggregate tag is $T = t_1 \oplus t_2 \oplus \cdots \oplus t_n$
- Proved the security

Application of group-testing to MAC [Goodrich et al. 05], [Minematsu 15]

- Both of them assumes a single-user setting
- Tag aggregate requires a secret key

Aggregate MAC: Syntax

Aggregate MAC (AM) consists of the following algorithms:

- Key generation $K \leftarrow \mathsf{KG}(1^p)$
 - p is a security parameter

Tagging $t \leftarrow \mathsf{Tag}(K_I, M, I)$

- Aggregate $T \leftarrow Agg((M_1, I_1, t_1), \dots, (M_n, I_n, t_n))$
 - Secret keys are not used
 - Often $T \leftarrow \mathsf{Agg}(t_1, \ldots, t_n)$

Verification $d \leftarrow \text{Ver}((K_1, \ldots, K_n), ((M_1, I_1), \ldots, (M_n, I_n)), T)$

• The decision d is either \top (valid) or \perp (invalid)

The security requirement is unforgeability

An adversary A against AM is given access to the following oracles: Tagging receives (M, I) and returns tag $t \leftarrow \text{Tag}(K_I, M, I)$ Corrupt receives I and returns K_I Verification receives $(((M_1, I_1), \dots, (M_n, I_n)), T)$ and returns $d \in \{\top, \bot\}$

 $\operatorname{Adv}_{\mathsf{AM}}^{\operatorname{uf}}(\mathbf{A}) \triangleq \Pr[\mathbf{A} \text{ succeeds in forgery}]$

 $\mathrm{Adv}^{\mathrm{uf}}_{\mathsf{AM}}(\mathbf{A})$ should be negligibly small for any efficient \mathbf{A}

A succeeds in forgery if A asks $Q = (((M_1, I_1), \dots, (M_n, I_n)), T)$ to \mathcal{VO} satisfying the following conditions:

- Q is judged valid
- A asks neither (M_j, I_j) to \mathcal{TO} nor I_j to \mathcal{CO} for $\exists j$ before Q

GTA MAC scheme using a $\boldsymbol{u} \times \boldsymbol{n}$ group-testing matrix

Key generation $K \leftarrow \mathsf{KG}(1^p)$

Tagging $t \leftarrow \mathsf{Tag}(K_I, M, I)$

Group-testing aggre $(T_1, \ldots, T_u) \leftarrow \mathsf{GTA}((M_1, I_1, t_1), \ldots, (M_n, I_n, t_n))$

- Secret keys are not used
- An aggregate tag is produced for each test

Group-testing verif

$$J \leftarrow \mathsf{GTV}((K_1, \ldots, K_n), ((M_1, I_1), \ldots, (M_n, I_n)), (T_1, \ldots, T_u))$$

• J is a set of $(M_{j^\prime}, I_{j^\prime}) {}^\prime {\rm s}$ judged invalid

Security requirements

- Unforgeability
- Identifiability
 - Completeness: GTV judges any valid (M, I, t) to be valid
 - Soundness: GTV judges any invalid (M, I, t) to be invalid

Unforgeability (1/2)

An adversary A against GTAM is given access to the oracles: Tagging receives (M, I) and returns $t \leftarrow Tag(K_I, M, I)$ Corrupt receives I and returns K_I

Group-testing verification

receives $(((M_1, I_1), \dots, (M_n, I_n)), (T_1, \dots, T_u))$ and returns the set of invalid (M_j, I_j) 's J

The advantage of \mathbf{A} against GTAM w.r.t. unforgeability

 $\operatorname{Adv}_{\mathsf{GTAM}}^{\operatorname{uf}}(\mathbf{A}) \triangleq \Pr[\mathbf{A} \text{ succeeds in forgery}]$

 $\mathrm{Adv}^{\mathrm{uf}}_{\mathsf{GTAM}}(\mathbf{A})$ should be negligibly small for any efficient \mathbf{A}

Unforgeability (2/2)

 ${\bf A}$ succeeds in forgery if ${\bf A}$ asks \mathcal{GTVO} a query

$$Q = (((M_1, I_1), \dots, (M_n, I_n)), (T_1, \dots, T_u))$$

satisfying that there exists some (M_j, I_j) s.t.

- (M_j, I_j) is judged valid by \mathcal{GTVO}
- A asks neither (M_j, I_j) to \mathcal{TO} nor I_j to \mathcal{CO} before asking Q

Identifiability: Completeness and Soundness

An adversary **A** is given access to the following oracles: Tagging receives (M, I) and returns $t \leftarrow Tag(K_I, M, I)$ Corrupt receives I and returns K_I

Group-testing receives $Q = ((M_1, I_1, t_1), \dots, (M_n, I_n, t_n))$

- **1** applies group testing to Q
- 2 returns the result

The advantage of \mathbf{A} against GTAM w.r.t.

completeness

 $\operatorname{Adv}_{\mathsf{GTAM}}^{\operatorname{id-c}}(\mathbf{A}) \triangleq \Pr \big[\mathcal{GTO} \text{ judges some valid } (M_j, I_j, t_j) \text{ invalid} \big]$

soundness

 $Adv_{\mathsf{GTAM}}^{\mathrm{id}\text{-}\mathbf{s}}(\mathbf{A}) \triangleq \Pr \big[\mathcal{GTO} \text{ judges some invalid } (M_j, I_j, t_j) \text{ valid} \big]$

Both advantages should be negligibly small for any efficient ${f A}$

S. Hirose (Univ. Fukui)

Generic GTA MAC using

- Aggre MAC AM = (KG, Tag, Agg, Ver)
- GT matrix *G*

Key generation KG Tagging Tag Group-testing aggre $(T_1, \ldots, T_n) \leftarrow \mathsf{GTA}(t_1, \ldots, t_n)$ $t_1 \ t_2 \ t_3 \ t_4$ $\begin{array}{c} T_1 \leftarrow \mathsf{Agg}(t_1, t_2) \\ T_2 \leftarrow \mathsf{Agg}(t_1, t_3) \\ T_3 \leftarrow \mathsf{Agg}(t_2, t_3, t_4) \end{array} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$ Group-testing verif For $(((M_1, I_1), ..., (M_n, I_n)), (T_1, ..., T_n)),$ 1 $t'_i \leftarrow \mathsf{Tag}(K_i, M_i, I_i)$ for $1 \le j \le n$ 2 $(T'_1, \ldots, T'_n) \leftarrow \mathsf{GTA}(t'_1, \ldots, t'_n)$ **3** For $1 \le i \le u$, if $T_i = T'_i$, all the involved (M_i, I_i) 's are valid

4 Remaining (M_j, I_j) 's are invalid

 $\mathsf{Generic}\ \mathsf{GTA}\ \mathsf{MAC}\ \mathsf{is}\ \mathsf{UF}\ \longleftarrow\ \mathsf{Underlying}\ \mathsf{Aggre}\ \mathsf{MAC}\ \mathsf{is}\ \mathsf{UF}$

Theorem

For any A against GTAM, there exists some B against AM s.t.

 $\mathrm{Adv}^{\mathrm{uf}}_{\mathsf{GTAM}_{\mathrm{g}}}(\mathbf{A}) \leq \mathrm{Adv}^{\mathrm{uf}}_{\mathsf{AM}}(\mathbf{B})$

	Α	В
Run time	$\leq s$	$\leq s$
Tagging queries	$\leq q_{\rm t}$	$\leq q_{ m t}$
Corrupt queries	$\leq q_{ m c}$	$\leq q_{\rm c}$
Verif queries	$\leq q_{\rm v}$	$\leq uq_{\rm v}$

Identifiability of Generic Construction

Generic GTA MAC satisfies completeness \leftarrow

- GTA matrix is *d*-disjunct
- Each query to \mathcal{GTO} contains at most d invalid (M_j, I_j, t_j) 's

Theorem (Completeness)

$$Adv_{\mathsf{GTAM}_{g}}^{id\text{-}c}(\mathbf{A}) = 0$$

Generic GTA MAC does not necessarily satisfy soundness

Unforgeability guarantees weak soundness

Two Instantiations

Two instantiations for group-testing aggregate:

- Based on Katz-Lindell AMAC: $T \leftarrow t_1 \oplus t_2 \oplus \cdots \oplus t_n$
- Based on cryptographic hashing: $T \leftarrow H(t_1, t_2, \dots, t_n)$

Security

- Both satisfy unforgeability and completeness
- For soundness:
 - GTA MAC based on Katz-Lindell does not satisfy soundness Eg.) Let (M_1, I_1, t_1) and (M_2, I_2, t_2) be valid tuples

The group test for invalid tuples

 $(M_1, I_1, t_1 \oplus c)$ and $(M_2, I_2, t_2 \oplus c)$

gets valid since $t_1 \oplus t_2 = (t_1 \oplus c) \oplus (t_2 \oplus c)$

• GTA MAC using hashing for aggregate satisfies soundness $\Leftarrow H$ is a random oracle

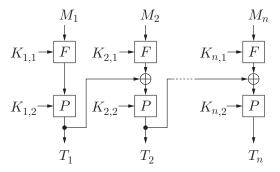
1 Non-adaptive Group Testing Aggregate MAC

2 Sequential Aggregate MAC

Motivation

[Eikemeier, Fischlin, et al. 2010] proposed two schemes:

- Using CMAC
- 2 Generic scheme using PRF F and PRP P



Our question:

- PRP is indispensable?
- Simpler construction?

22 / 33

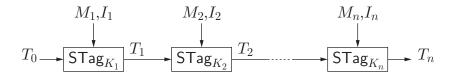
Syntax

Sequential aggregate MAC (SAM) consists of the following algorithms: Key generation $K \leftarrow \text{KG}(1^p)$ Sequential Aggregate Tagging $T \leftarrow \text{STag}(K_I, M, I, T')$

• T' is called an aggregate-so-far tag

Verification $d \leftarrow \mathsf{SVer}((K_1, \ldots, K_n), ((M_1, I_1), \ldots, (M_n, I_n)), T_n)$

• Decision $d \in \{\top, \bot\}$



The security requirement of SAM is unforgeability

An adversary **A** against SAM is given access to the following oracles: Seq agg tagging returns aggregate tag T for query (M, I), T'Corrupt returns K_I for query IVerification returns $d \in \{\top, \bot\}$ for query $((M_1, I_1), \ldots, (M_n, I_n)), T_n$

 ${\bf A}$ is allowed to make multiple queries adaptively to each oracle

The advantage of ${\bf A}$ against SAM is

 $\mathrm{Adv}^{\mathrm{uf}}_{\mathsf{SAM}}(\mathbf{A}) \triangleq \Pr[\mathbf{A} \text{ succeeds in forgery}]$

Security Requirement (2/2)

 ${\bf A}$ succeeds in forgery if ${\bf A}$ asks the verification oracle a query

$$Q = (((M_1, I_1), \dots, (M_n, I_n)), T_n)$$

satisfying the following conditions:

- Q is judged valid
- There exists some $j \in [1, n]$ s.t.
 - A does not ask (M_j, I_j, T_{j-1}') to the seq agg tagging oracle
 - A does not ask I_j to the corrupt oracle

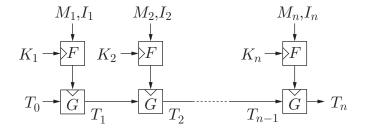
before Q

The First Proposed Scheme

Using PRF ${\cal F}$ and PRP ${\cal G}$

Suitable for a block cipher

Sequential Aggregate Tagging $T_i = G_{F_{K_i}(M_i,I_i)}(T_{i-1})$



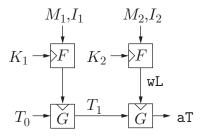
Uses the "tag" of a message by F as a secret key of G for aggregate

Suppose that G is a secure PRF with a weak key wL s.t.

$$G_{\mathtt{wL}}(T) = \mathtt{aT}$$
 for any T

Then, the following attack always succeeds in forgery:

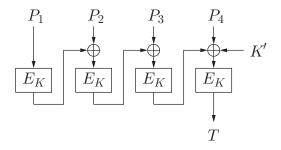
- **1** Ask I_2 to the corrupt oracle and obtain K_2 .
- **2** Compute M_2 s.t. $F_{K_2}(M_2, I_2) = wL$.
- $(((M_1, I_1), (M_2, I_2)), aT)$ is a successful forgery for any (M_1, I_1)



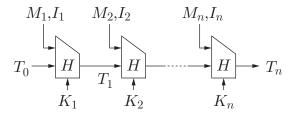
G Should Be a PRP (2/2)

With knowledge of K_2 , it is easy to compute $(M_2, I_2) = F_{K_2}^{-1}(wL)$

- if F is a block cipher
- if F is CMAC



Sequential Aggregate Tagging $T_i = H_{K_i}(T_{i-1}, M_i, I_i)$



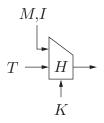
Question: Security requirement for H?

• Notice that K_i 's can be corrupted

Security requirement for H(1/2)

Sufficient conditions:

- H keyed via K is PRF, and
- H keyed via T is PRF under some leakage of T due to verification

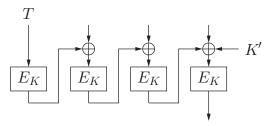


- CMAC does not satisfy the requirement
- HMAC seems OK

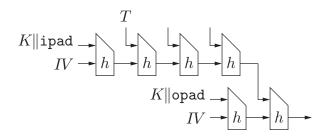
The naive scheme may be suitable for a hash function

Security requirement for H(2/2)

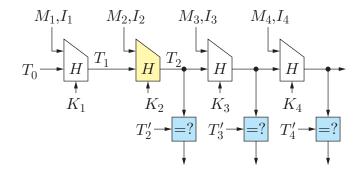
CMAC is not PRF if keyed via T



HMAC



Intuitive Idea of Unforgeability Proof



• (M_2, I_2, T_1) is new and K_2 is not corrupted $\implies T_2$ is random

Verification only leaks equality to given T'_i

Conclusion

Application of Non-adaptive group-testing to aggregate MAC

- Formalization of syntax and security requirements
- Generic construction and two instantiations

Sequential aggregate MAC

- A scheme for a block cipher
- A scheme for a hash function

Other work

Application of adaptive group-testing to aggregate MAC

Future work

- Efficient verification algorithm of *d*-disjunctness of GT matrix
- Security analysis of the naive scheme using CMAC for seq agg MAC