A Note on Aggregate MAC Schemes

Shoichi Hirose1 Junji Shikata2

1University of Fukui, Japan
2Yokohama National University, Japan

13/11/2018
ASK 2018, Kolkata
Introduction

Message authentication code (MAC)

\[t_i = F_K(M_i) \]

\[t_i = F_K(M_i) ? \]

\[(M_1, t_1) \]
\[(M_2, t_2) \]
\[\vdots \]
\[\vdots \]

Sender Receiver

Aggregate MAC [Katz, Lindell 2008]

- Inspired by aggregate signature
- Generate an aggregate tag for multiple messages

\[T \leftarrow \text{Aggregate}((M_1, I_1, t_1), \ldots, (M_n, I_n, t_n)) \]

- Check the validity of messages in a single verification w.r.t. \(T \)
- Reduce the amount of storage and/or communication
Two Flavours of Aggregation

(Non-sequential) aggregation: The order does not matter

\[(M_1, I_1, t_1) \]
\[(M_2, I_2, t_2) \]
\[\vdots \]
\[(M_n, I_n, t_n) \]

Often \(T \leftarrow \text{Agg}(t_1, t_2, \ldots, t_n) \)

Sequential aggregation: The order matters

\[(M_1, I_1); T_1 \]
\[(M_2, I_2); T_2 \]
\[(M_3, I_3); T_3 \]
\[\vdots \]

Called history-free if \(T_j \leftarrow \text{SeqAgg}_{K_j}(M_j, I_j, T_{j-1}) \)
Brief Overview

Topics of This Talk

- Application of non-adaptive group-testing to aggregate MAC
- Sequential aggregate MAC

Related Work

- (Non-sequential) Aggregate MAC
- Sequential aggregate MAC
- Forward-secure sequential aggregate MAC (for secure logging)
 - Schneier and Kelsey (1999)
 - Ma and Tsudik (2007)
 - Hirose and Kuwakado (2014)
1 Non-adaptive Group Testing Aggregate MAC

2 Sequential Aggregate MAC
Motivation

Aggregate MAC

- Generate an aggregate tag for multiple messages

\[T \leftarrow \text{Aggregate}((M_1, I_1, t_1), \ldots, (M_n, I_n, t_n)) \]

- Check the validity of messages in a single verification w.r.t. \(T \)
 - If valid, all messages are OK.
 - Otherwise, some are invalid, but we can’t see which.

Problem: Identify the invalid messages with fewer than \(n \) agg. tags

Our solution: Apply group testing to aggregate MAC

Two types of group testing

- Non-adaptive: All tests are chosen in advance
- Adaptive: A new test can be chosen after the current test
Non-adaptive Group Testing

Specified by a binary matrix (Group-testing matrix):

\[
\begin{pmatrix}
s1 & s2 & s3 & s4 \\
test1 & 1 & 1 & 0 & 0 \\
test2 & 1 & 0 & 1 & 0 \\
test3 & 0 & 1 & 1 & 1 \\
\end{pmatrix}
\]

- s1, s2, s3, and s4 are samples.
- Each sample is either negative or positive.
- The result of a test is
 - negative \iff All the involved samples are negative
 - positive \iff Some of the involved samples are positive
- Identify the positive samples with (\# of tests) < (\# of samples)
 Assumption: \# of positive samples is upper-bounded
d-disjunct GT Matrix

Definition (GT matrix \(G \) is d-disjunct)

For any \((d+1)\) columns \(g_{j_1}, g_{j_2}, \ldots, g_{j_{d+1}} \), there exists some \(i \) s.t.

- \(i \)-th coordinate of \(g_{j_1} \lor g_{j_2} \lor \cdots \lor g_{j_d} \) is 0
- \(i \)-th coordinate of \(g_{j_{d+1}} \) is 1

\(d \)-disjunctness guarantees: \((\#\) of positive samples\() \leq d \implies \) each negative sample is included in a test only with negative samples

Non-adaptive group testing based on \(d \)-disjunct GT matrix

- identifies all the positive samples if \((\#\) of them\() \leq d \)
- All samples involved in negative tests are negative.
- All the remaining samples are positive.
Agenda

- Syntax
- Security requirements
 - Unforgeability
 - Identifiability: Completeness and soundness
- Generic construction
- Two instantiations
- Analysis of provable security
Related Work

Aggregate MAC for multiple users [Katz-Lindell 08]
- Formalized the syntax and security requirement
- Proposed scheme: For \((M_1, I_1), (M_2, I_2), \ldots, (M_n, I_n)\),
 - \(t_j = \text{MAC}(K_j, M_j)\)
 - The aggregate tag is \(T = t_1 \oplus t_2 \oplus \cdots \oplus t_n\)
- Proved the security

Application of group-testing to MAC [Goodrich et al. 05], [Minematsu 15]
- Both of them assumes a single-user setting
- Tag aggregate requires a secret key
Aggregate MAC: Syntax

Aggregate MAC (AM) consists of the following algorithms:

Key generation \(K \leftarrow \text{KG}(1^p) \)

- \(p \) is a security parameter

Tagging \(t \leftarrow \text{Tag}(K_I, M, I) \)

Aggregate \(T \leftarrow \text{Agg}((M_1, I_1, t_1), \ldots, (M_n, I_n, t_n)) \)

- Secret keys are not used
- Often \(T \leftarrow \text{Agg}(t_1, \ldots, t_n) \)

Verification \(d \leftarrow \text{Ver}((K_1, \ldots, K_n), ((M_1, I_1), \ldots, (M_n, I_n)), T) \)

- The decision \(d \) is either \(\top \) (valid) or \(\bot \) (invalid)
The security requirement is unforgeability

An adversary A against AM is given access to the following oracles:

- **Tagging** receives (M, I) and returns tag $t \leftarrow \text{Tag}(K_I, M, I)$
- **Corrupt** receives I and returns K_I
- **Verification** receives $(((M_1, I_1), \ldots, (M_n, I_n)), T)$ and returns $d \in \{\top, \bot\}$

$$\text{Adv}_{AM}^\text{uf}(A) \triangleq \Pr[A \text{ succeeds in forgery}]$$

$\text{Adv}_{AM}^\text{uf}(A)$ should be negligibly small for any efficient A

A succeeds in forgery if A asks $Q = (((M_1, I_1), \ldots, (M_n, I_n)), T)$ to \mathcal{VO} satisfying the following conditions:

- Q is judged valid
- A asks neither (M_j, I_j) to $\mathcal{T}\mathcal{O}$ nor I_j to $\mathcal{C}\mathcal{O}$ for $\exists j$ before Q
Group-Testing Aggregate (GTA) MAC

GTA MAC scheme using a $u \times n$ group-testing matrix

Key generation $K \leftarrow KG(1^p)$

Tagging $t \leftarrow \text{Tag}(K_I, M, I)$

Group-testing aggre $(T_1, \ldots, T_u) \leftarrow \text{GTA}((M_1, I_1, t_1), \ldots, (M_n, I_n, t_n))$
 - Secret keys are not used
 - An aggregate tag is produced for each test

Group-testing verif

$J \leftarrow \text{GTV}((K_1, \ldots, K_n), ((M_1, I_1), \ldots, (M_n, I_n)), (T_1, \ldots, T_u))$
 - J is a set of $(M_{j'}, I_{j'})$’s judged invalid

Security requirements
 - Unforgeability
 - Identifiability
 - Completeness: GTV judges any valid (M, I, t) to be valid
 - Soundness: GTV judges any invalid (M, I, t) to be invalid
An adversary A against GTAM is given access to the oracles:

Tagging receives (M, I) and returns $t \leftarrow \text{Tag}(K_I, M, I)$

Corrupt receives I and returns K_I

Group-testing verification
- receives $(((M_1, I_1), \ldots, (M_n, I_n)), (T_1, \ldots, T_u))$ and
- returns the set of invalid (M_j, I_j)’s J

The advantage of A against GTAM w.r.t. unforgeability

$$\text{Adv}^{\text{uf}}_{\text{GTAM}}(A) \triangleq \Pr[A \text{ succeeds in forgery}]$$

$\text{Adv}^{\text{uf}}_{\text{GTAM}}(A)$ should be negligibly small for any efficient A.
A succeeds in forgery if A asks \mathcal{GTVO} a query

$$Q = (((M_1, I_1), \ldots, (M_n, I_n)), (T_1, \ldots, T_u))$$

satisfying that there exists some (M_j, I_j) s.t.

- (M_j, I_j) is judged valid by \mathcal{GTVO}
- A asks neither (M_j, I_j) to $\mathcal{T O}$ nor I_j to \mathcal{CO} before asking Q
An adversary A is given access to the following oracles:

Tagging receives (M, I) and returns $t \leftarrow \text{Tag}(K_I, M, I)$

Corrupt receives I and returns K_I

Group-testing receives $Q = ((M_1, I_1, t_1), \ldots, (M_n, I_n, t_n))$

1. applies group testing to Q
2. returns the result

The advantage of A against GTAM w.r.t.

- completeness

$$\text{Adv}_{\text{GTAM}}^{\text{id-c}}(A) \triangleq \Pr[\mathcal{GTO} \text{ judges some valid } (M_j, I_j, t_j) \text{ invalid}]$$

- soundness

$$\text{Adv}_{\text{GTAM}}^{\text{id-s}}(A) \triangleq \Pr[\mathcal{GTO} \text{ judges some invalid } (M_j, I_j, t_j) \text{ valid}]$$

Both advantages should be negligibly small for any efficient A.
Generic GTA MAC using

- Aggre MAC AM = (KG, Tag, Agg, Ver)
- GT matrix G

Key generation KG

Tagging Tag

Group-testing aggre $(T_1, \ldots, T_u) \leftarrow \text{GTA}(t_1, \ldots, t_n)$

$$
\begin{align*}
T_1 &\leftarrow \text{Agg}(t_1, t_2) \\
&= \begin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix} \\
T_2 &\leftarrow \text{Agg}(t_1, t_3) \\
&= \begin{pmatrix} 1 & 0 & 1 & 0 \end{pmatrix} \\
T_3 &\leftarrow \text{Agg}(t_2, t_3, t_4) \\
&= \begin{pmatrix} 0 & 1 & 1 & 1 \end{pmatrix}
\end{align*}
$$

Group-testing verif For $(((M_1, I_1), \ldots, (M_n, I_n)), (T_1, \ldots, T_u))$,

1. $t'_j \leftarrow \text{Tag}(K_j, M_j, I_j)$ for $1 \leq j \leq n$
2. $(T'_1, \ldots, T'_u) \leftarrow \text{GTA}(t'_1, \ldots, t'_n)$
3. For $1 \leq i \leq u$, if $T_i = T'_i$, all the involved (M_j, I_j)’s are valid
4. Remaining (M_j, I_j)’s are invalid
Unforgeability of Generic Construction

Generic GTA MAC is UF ⇐ Underlying Aggre MAC is UF

Theorem

For any A against GTAM, there exists some B against AM s.t.

\[\text{Adv}^{uf}_{\text{GTAM}}(A) \leq \text{Adv}^{uf}_{\text{AM}}(B) \]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run time</td>
<td>(\leq s)</td>
<td>(\leq s)</td>
</tr>
<tr>
<td>Tagging queries</td>
<td>(\leq q_t)</td>
<td>(\leq q_t)</td>
</tr>
<tr>
<td>Corrupt queries</td>
<td>(\leq q_c)</td>
<td>(\leq q_c)</td>
</tr>
<tr>
<td>Verif queries</td>
<td>(\leq q_v)</td>
<td>(\leq uq_v)</td>
</tr>
</tbody>
</table>
Identifiability of Generic Construction

Generic GTA MAC satisfies completeness \iff

- GTA matrix is d-disjunct
- Each query to \mathcal{GTO} contains at most d invalid (M_j, I_j, t_j)'s

Theorem (Completeness)

$$\text{Adv}^{\text{id-c}}_{\text{GTAM}_g}(A) = 0$$

Generic GTA MAC does not necessarily satisfy soundness

- Unforgeability guarantees weak soundness
Two instantiations for group-testing aggregate:

- Based on Katz-Lindell AMAC: \(T \leftarrow t_1 \oplus t_2 \oplus \cdots \oplus t_n \)
- Based on cryptographic hashing: \(T \leftarrow H(t_1, t_2, \ldots, t_n) \)

Security

- Both satisfy unforgeability and completeness
- For soundness:
 - GTA MAC based on Katz-Lindell does not satisfy soundness

 Eg.) Let \((M_1, I_1, t_1)\) and \((M_2, I_2, t_2)\) be valid tuples

The group test for invalid tuples
 \[(M_1, I_1, t_1 \oplus c)\] and \[(M_2, I_2, t_2 \oplus c)\]

gets valid since \(t_1 \oplus t_2 = (t_1 \oplus c) \oplus (t_2 \oplus c)\)

- GTA MAC using hashing for aggregate satisfies soundness
 \(\Leftarrow H\) is a random oracle
1 Non-adaptive Group Testing Aggregate MAC

2 Sequential Aggregate MAC
[Eikemeier, Fischlin, et al. 2010] proposed two schemes:

1. Using CMAC
2. Generic scheme using PRF F and PRP P

Our question:

- PRP is indispensable?
- Simpler construction?
Sequential aggregate MAC (SAM) consists of the following algorithms:

Key generation \(K \leftarrow \text{KG}(1^p) \)

Sequential Aggregate Tagging \(T \leftarrow \text{STag}(K_I, M, I, T') \)
- \(T' \) is called an aggregate-so-far tag

Verification \(d \leftarrow \text{SVer}((K_1, \ldots, K_n), ((M_1, I_1), \ldots, (M_n, I_n)), T_n) \)
- Decision \(d \in \{\top, \bot\} \)

\[
\begin{align*}
T_0 & \xrightarrow{M_1, I_1} \text{STag}_{K_1} \quad T_1 & \xrightarrow{M_2, I_2} \text{STag}_{K_2} \quad \cdots \quad T_{n-1} & \xrightarrow{M_n, I_n} \text{STag}_{K_n} \\
& \xrightarrow{T_n}
\end{align*}
\]
The security requirement of SAM is unforgeability

An adversary A against SAM is given access to the following oracles:

Seq agg tagging returns aggregate tag T for query $(M, I), T'$

Corrupt returns K_I for query I

Verification returns $d \in \{\top, \bot\}$ for query $((M_1, I_1), \ldots, (M_n, I_n)), T_n$

A is allowed to make multiple queries adaptively to each oracle

The advantage of A against SAM is

$$Adv_{SAM}^{uf}(A) \triangleq \Pr[A \text{ succeeds in forgery}]$$
A succeeds in forgery if A asks the verification oracle a query

\[Q = (((M_1, I_1), \ldots, (M_n, I_n)), T_n) \]

satisfying the following conditions:

- \(Q \) is judged valid
- There exists some \(j \in [1, n] \) s.t.
 - A does not ask \((M_j, I_j, T'_j - 1) \) to the seq agg tagging oracle
 - A does not ask \(I_j \) to the corrupt oracle

before \(Q \)
The First Proposed Scheme

Using PRF F and PRP G

- Suitable for a block cipher

Sequential Aggregate Tagging

$$T_i = G_{F_{K_i}}(M_i, I_i)(T_{i-1})$$

Uses the “tag” of a message by F as a secret key of G for aggregate
Suppose that G is a secure PRF with a weak key w_L s.t.

$$G_{w_L}(T) = aT$$

for any T.

Then, the following attack always succeeds in forgery:

1. Ask I_2 to the corrupt oracle and obtain K_2.
2. Compute M_2 s.t. $F_{K_2}(M_2, I_2) = w_L$.
3. $(((M_1, I_1), (M_2, I_2)), aT)$ is a successful forgery for any (M_1, I_1).
With knowledge of K_2, it is easy to compute $(M_2, I_2) = F_{K_2}^{-1}(wL)$

- if F is a block cipher
- if F is CMAC
Sequential Aggregate Tagging \(T_i = H_{K_i}(T_{i-1}, M_i, I_i) \)

Question: Security requirement for \(H \)?
- Notice that \(K_i \)'s can be corrupted
Security requirement for H (1/2)

Sufficient conditions:

- H keyed via K is PRF, and
- H keyed via T is PRF under some leakage of T due to verification

- CMAC does not satisfy the requirement
- HMAC seems OK

The naive scheme may be suitable for a hash function
CMAC is not PRF if keyed via T

HMAC

Security requirement for H (2/2)
Intuitive Idea of Unforgeability Proof

- \((M_2, I_2, T_1)\) is new and \(K_2\) is not corrupted \(\implies T_2\) is random
- Verification only leaks equality to given \(T_j'\)
Conclusion

Application of Non-adaptive group-testing to aggregate MAC
 • Formalization of syntax and security requirements
 • Generic construction and two instantiations

Sequential aggregate MAC
 • A scheme for a block cipher
 • A scheme for a hash function

Other work
 • Application of adaptive group-testing to aggregate MAC

Future work
 • Efficient verification algorithm of \(d\)-disjunctness of GT matrix
 • Security analysis of the naive scheme using CMAC for seq agg MAC