
A Note on Aggregate MAC Schemes

Shoichi Hirose1 Junji Shikata2

1University of Fukui, Japan

2Yokohama National University, Japan

13/11/2018
ASK 2018, Kolkata

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 1 / 33

Introduction

Message authentication code (MAC)

ti = FK(Mi) ti = FK(Mi) ?
(M1, t1)

(M2, t2)

Sender Receiver

. .
 .

Aggregate MAC [Katz, Lindell 2008]

• Inspired by aggregate signature

• Generate an aggregate tag for multiple messages

T ← Aggregate((M1, I1, t1), . . . , (Mn, In, tn))

• Check the validity of messages in a single verification w.r.t. T

• Reduce the amount of storage and/or communication

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 2 / 33

Two Flavours of Aggregation

(Non-sequential) aggregation: The order does not matter

T

(M1,I1,t1)

Agg

(Mn,In,tn)

(M2,I2,t2)

.
.
.

Often T ← Agg(t1, t2, . . . , tn)

Sequential aggregation: The order matters

(M1,I1); T1
I1 I2 I3

(M2,I2); T2 (M3,I3); T3

(M1,I1) (M2,I2)
(M1,I1)

Called history-free if Tj ← SeqAggKj
(Mj , Ij , Tj−1)

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 3 / 33

Brief Overview

Topics of This Talk

• Application of non-adaptive group-testing to aggregate MAC

• Sequential aggregate MAC

Related Work
• (Non-sequential) Aggregate MAC

• Katz, Lindell (2008)
• Sequential aggregate MAC

• Eikemeier, Fischlin, et al. (2010)
• Forward-secure sequential aggregate MAC (for secure logging)

• Schneier and Kelsey (1999)
• Ma and Tsudik (2007)
• Hirose and Kuwakado (2014)

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 4 / 33

1 Non-adaptive Group Testing Aggregate MAC

2 Sequential Aggregate MAC

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 5 / 33

Motivation

Aggregate MAC

• Generate an aggregate tag for multiple messages

T ← Aggregate((M1, I1, t1), . . . , (Mn, In, tn))

• Check the validity of messages in a single verification w.r.t. T

• If valid, all messages are OK.
• Otherwise, some are invalid, but we can’t see which.

Problem: Identify the invalid messages with fewer than n agg. tags

Our solution: Apply group testing to aggregate MAC

Two types of group testing

• Non-adaptive: All tests are chosen in advance

• Adaptive: A new test can be chosen after the current test

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 6 / 33

Non-adaptive Group Testing

Specified by a binary matrix (Group-testing matrix):

s1 s2 s3 s4

test1 1 1 0 0
test2 1 0 1 0
test3 0 1 1 1

• s1, s2, s3, and s4 are samples.

• Each sample is either negative or positive.
• The result of a test is

• negative ⇐⇒ All the involved samples are negative
• positive ⇐⇒ Some of the involved samples are positive

• Identify the positive samples with (# of tests) < (# of samples)
Assumption: # of positive samples is upper-bounded

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 7 / 33

d-disjunct GT Matrix

Definition (GT matrix G is d-disjunct)

For any (d+ 1) columns gj1 , gj2 , . . . , gjd+1
, there exists some i s.t.

• i-th coordinate of gj1 ∨ gj2 ∨ · · · ∨ gjd is 0

• i-th coordinate of gjd+1
is 1

d-disjunctness guarantees: (# of positive samples) ≤ d =⇒

each negative sample is included in a test only with negative samples

Non-adaptive group testing based on d-disjunct GT matrix

• identifies all the positive samples if (# of them) ≤ d

• All samples involved in negative tests are negative.

• All the remaining samples are positive.

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 8 / 33

Agenda

• Syntax
• Security requirements

• Unforgeability
• Identifiability: Completeness and soundness

• Generic construction

• Two instantiations

• Analysis of provable security

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 9 / 33

Related Work

Agregate MAC for multiple users [Katz-Lindell 08]

• Formalized the syntax and security requirement
• Proposed scheme: For (M1, I1), (M2, I2), . . . , (Mn, In),

• tj = MAC(Kj ,Mj)
• The aggregate tag is T = t1 ⊕ t2 ⊕ · · · ⊕ tn

• Proved the security

Application of group-testing to MAC [Goodrich et al. 05], [Minematsu 15]

• Both of them assumes a single-user setting

• Tag aggregate requires a secret key

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 10 / 33

Aggregate MAC: Syntax

Aggregate MAC (AM) consists of the following algorithms:

Key generation K ← KG(1p)

• p is a security parameter

Tagging t← Tag(KI ,M, I)

Aggregate T ← Agg((M1, I1, t1), . . . , (Mn, In, tn))

• Secret keys are not used
• Often T ← Agg(t1, . . . , tn)

Verification d← Ver((K1, . . . ,Kn), ((M1, I1), . . . , (Mn, In)), T)

• The decision d is either > (valid) or ⊥ (invalid)

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 11 / 33

Aggregate MAC: Security Requirement

The security requirement is unforgeability

An adversary A against AM is given access to the following oracles:

Tagging receives (M, I) and returns tag t← Tag(KI ,M, I)

Corrupt receives I and returns KI

Verification receives (((M1, I1), . . . , (Mn, In)), T) and returns d ∈ {>,⊥}

AdvufAM(A) , Pr[A succeeds in forgery]

AdvufAM(A) should be negligibly small for any efficient A

A succeeds in forgery if A asks Q = (((M1, I1), . . . , (Mn, In)), T) to VO
satisfying the following conditions:

• Q is judged valid

• A asks neither (Mj , Ij) to T O nor Ij to CO for ∃j before Q

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 12 / 33

Group-Testing Aggregate (GTA) MAC

GTA MAC scheme using a u× n group-testing matrix

Key generation K ← KG(1p)

Tagging t← Tag(KI ,M, I)

Group-testing aggre (T1, . . . , Tu)← GTA((M1, I1, t1), . . . , (Mn, In, tn))

• Secret keys are not used
• An aggregate tag is produced for each test

Group-testing verif
J ← GTV((K1, . . . ,Kn), ((M1, I1), . . . , (Mn, In)), (T1, . . . , Tu))

• J is a set of (Mj′ , Ij′)’s judged invalid

Security requirements

• Unforgeability
• Identifiability
• Completeness: GTV judges any valid (M, I, t) to be valid
• Soundness: GTV judges any invalid (M, I, t) to be invalid

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 13 / 33

Unforgeability (1/2)

An adversary A against GTAM is given access to the oracles:

Tagging receives (M, I) and returns t← Tag(KI ,M, I)

Corrupt receives I and returns KI

Group-testing verification
receives (((M1, I1), . . . , (Mn, In)), (T1, . . . , Tu)) and
returns the set of invalid (Mj , Ij)’s J

The advantage of A against GTAM w.r.t. unforgeability

AdvufGTAM(A) , Pr[A succeeds in forgery]

AdvufGTAM(A) should be negligibly small for any efficient A

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 14 / 33

Unforgeability (2/2)

A succeeds in forgery if A asks GT VO a query

Q = (((M1, I1), . . . , (Mn, In)), (T1, . . . , Tu))

satisfying that there exists some (Mj , Ij) s.t.

• (Mj , Ij) is judged valid by GT VO
• A asks neither (Mj , Ij) to T O nor Ij to CO before asking Q

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 15 / 33

Identifiability: Completeness and Soundness

An adversary A is given access to the following oracles:

Tagging receives (M, I) and returns t← Tag(KI ,M, I)

Corrupt receives I and returns KI

Group-testing receives Q = ((M1, I1, t1), . . . , (Mn, In, tn))

1 applies group testing to Q
2 returns the result

The advantage of A against GTAM w.r.t.

• completeness

Advid-cGTAM(A) , Pr
[
GT O judges some valid (Mj , Ij , tj) invalid

]
• soundness

Advid-sGTAM(A) , Pr
[
GT O judges some invalid (Mj , Ij , tj) valid

]
Both advantages should be negligibly small for any efficient A

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 16 / 33

Generic Construction

Generic GTA MAC using
• Aggre MAC AM = (KG,Tag,Agg,Ver)
• GT matrix G

Key generation KG

Tagging Tag

Group-testing aggre (T1, . . . , Tu)← GTA(t1, . . . , tn)

t1 t2 t3 t4

T1 ← Agg(t1, t2) 1 1 0 0
T2 ← Agg(t1, t3) 1 0 1 0
T3 ← Agg(t2, t3, t4) 0 1 1 1

Group-testing verif For (((M1, I1), . . . , (Mn, In)), (T1, . . . , Tu)),

1 t′j ← Tag(Kj ,Mj , Ij) for 1 ≤ j ≤ n
2 (T ′1, . . . , T

′
u)← GTA(t′1, . . . , t

′
n)

3 For 1 ≤ i ≤ u, if Ti = T ′i , all the involved (Mj , Ij)’s are valid
4 Remaining (Mj , Ij)’s are invalid

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 17 / 33

Unforgeability of Generic Construction

Generic GTA MAC is UF ⇐= Underlying Aggre MAC is UF

Theorem

For any A against GTAM, there exists some B against AM s.t.

AdvufGTAMg
(A) ≤ AdvufAM(B)

A B

Run time ≤ s ≤ s
Tagging queries ≤ qt ≤ qt
Corrupt queries ≤ qc ≤ qc
Verif queries ≤ qv ≤ uqv

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 18 / 33

Identifiability of Generic Construction

Generic GTA MAC satisfies completeness ⇐=
• GTA matrix is d-disjunct

• Each query to GT O contains at most d invalid (Mj , Ij , tj)’s

Theorem (Completeness)

Advid-cGTAMg
(A) = 0

Generic GTA MAC does not necessarily satisfy soundness

• Unforgeability guarantees weak soundness

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 19 / 33

Two Instantiations

Two instantiations for group-testing aggregate:

• Based on Katz-Lindell AMAC: T ← t1 ⊕ t2 ⊕ · · · ⊕ tn

• Based on cryptographic hashing: T ← H(t1, t2, . . . , tn)

Security

• Both satisfy unforgeability and completeness
• For soundness:

• GTA MAC based on Katz-Lindell does not satisfy soundness

Eg.) Let (M1, I1, t1) and (M2, I2, t2) be valid tuples

The group test for invalid tuples

(M1, I1, t1 ⊕ c) and (M2, I2, t2 ⊕ c)

gets valid since t1 ⊕ t2 = (t1 ⊕ c)⊕ (t2 ⊕ c)
• GTA MAC using hashing for aggregate satisfies soundness

⇐= H is a random oracle

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 20 / 33

1 Non-adaptive Group Testing Aggregate MAC

2 Sequential Aggregate MAC

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 21 / 33

Motivation

[Eikemeier, Fischlin, et al. 2010] proposed two schemes:

1 Using CMAC

2 Generic scheme using PRF F and PRP P

K1,1

M1 M2

T1

K2,1

Mn

Kn,1

Tn

F F F

K1,2

T2

K2,2 Kn,2P P P

Our question:
• PRP is indispensable?
• Simpler construction?

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 22 / 33

Syntax

Sequential aggregate MAC (SAM) consists of the following algorithms:

Key generation K ← KG(1p)

Sequential Aggregate Tagging T ← STag(KI ,M, I, T ′)

• T ′ is called an aggregate-so-far tag

Verification d← SVer((K1, . . . ,Kn), ((M1, I1), . . . , (Mn, In)), Tn)

• Decision d ∈ {>,⊥}

T0

M1,I1

STagK1

T1

M2,I2

T2

Mn,In

TnSTagK2
STagKn

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 23 / 33

Security Requirement (1/2)

The security requirement of SAM is unforgeability

An adversary A against SAM is given access to the following oracles:

Seq agg tagging returns aggregate tag T for query (M, I), T ′

Corrupt returns KI for query I

Verification returns d ∈ {>,⊥} for query ((M1, I1), . . . , (Mn, In)), Tn

A is allowed to make multiple queries adaptively to each oracle

The advantage of A against SAM is

AdvufSAM(A) , Pr[A succeeds in forgery]

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 24 / 33

Security Requirement (2/2)

A succeeds in forgery if A asks the verification oracle a query

Q = (((M1, I1), . . . , (Mn, In)), Tn)

satisfying the following conditions:

• Q is judged valid
• There exists some j ∈ [1, n] s.t.

• A does not ask (Mj , Ij , T
′
j−1) to the seq agg tagging oracle

• A does not ask Ij to the corrupt oracle

before Q

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 25 / 33

The First Proposed Scheme

Using PRF F and PRP G

• Suitable for a block cipher

Sequential Aggregate Tagging Ti = GFKi
(Mi,Ii)(Ti−1)

M1,I1

T1

F

TnG
T2 Tn−1

F F

G GT0

K1 K2 Kn

M2,I2 Mn,In

Uses the “tag” of a message by F as a secret key of G for aggregate

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 26 / 33

G Should Be a PRP (1/2)

Suppose that G is a secure PRF with a weak key wL s.t.

GwL(T) = aT for any T

Then, the following attack always succeeds in forgery:

1 Ask I2 to the corrupt oracle and obtain K2.

2 Compute M2 s.t. FK2(M2, I2) = wL.

3 (((M1, I1), (M2, I2)), aT) is a successful forgery for any (M1, I1)

M1,I1

T1

F

aTG

F

GT0

K1 K2

M2,I2

wL

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 27 / 33

G Should Be a PRP (2/2)

With knowledge of K2, it is easy to compute (M2, I2) = F−1K2
(wL)

• if F is a block cipher

• if F is CMAC

EK EK EK

P2 P3

EK

T

P1

K′

P4

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 28 / 33

The Second Proposed Scheme (Naive Scheme)

Sequential Aggregate Tagging Ti = HKi(Ti−1,Mi, Ii)

M1,I1

T1
TnT0

K1 Kn

M2,I2 Mn,In

H H H

K2

Question: Security requirement for H?

• Notice that Ki’s can be corrupted

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 29 / 33

Security requirement for H (1/2)

Sufficient conditions:

• H keyed via K is PRF, and

• H keyed via T is PRF under some leakage of T due to verification

M,I

T

K

H

• CMAC does not satisfy the requirement

• HMAC seems OK

The naive scheme may be suitable for a hash function

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 30 / 33

Security requirement for H (2/2)

CMAC is not PRF if keyed via T

EK EK EK EK

T

K′

HMAC

K‖ipad
T

hIV h h h

hIV h

K‖opad

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 31 / 33

Intuitive Idea of Unforgeability Proof

M1,I1

T1T0

K1

M2,I2

H

K2

M3,I3

H

K3

M4,I4

H

K4

T2
′ T3

′ T4
′

T2H

=? =? =?

• (M2, I2, T1) is new and K2 is not corrupted =⇒ T2 is random

• Verification only leaks equality to given T ′j

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 32 / 33

Conclusion

Application of Non-adaptive group-testing to aggregate MAC

• Formalization of syntax and security requirements

• Generic construction and two instantiations

Sequential aggregate MAC

• A scheme for a block cipher

• A scheme for a hash function

Other work

• Application of adaptive group-testing to aggregate MAC

Future work

• Efficient verification algorithm of d-disjunctness of GT matrix

• Security analysis of the naive scheme using CMAC for seq agg MAC

S. Hirose (Univ. Fukui) A Note on Aggregate MAC Schemes ASK 2018 (13-16/11/2018) 33 / 33

	Non-adaptive Group Testing Aggregate MAC
	Sequential Aggregate MAC

