Security Reductions of Cryptographic Hash Functions

Shoichi Hirose

University of Fukui

The first Asian Workshop on Symmetric Key Cryptography – ASK 2011 (2011/8/29-31, Nanyang Technological University)

Cryptographic Hash Function

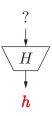
$$H:\{0,1\}^* \to \{0,1\}^n$$

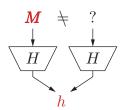
Properties

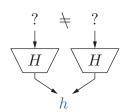
Preimage Resistance

Second PR

Collision Resistance





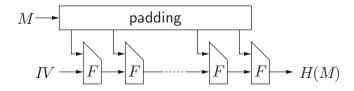


	PR	2ndPR	CR
Complexity	$O(2^n)$	$O(2^n)$	$O(2^{n/2})$

Iterated Hash Function (Merkle-Damgård)

- Compression function
 - $F: \{0,1\}^n \times \{0,1\}^b \to \{0,1\}^n$
- ullet Initial value $IV \in \{0,1\}^n$

Input $M \in \{0,1\}^*$

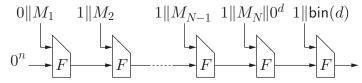


CR Preservation

$$F:\{0,1\}^n\times\{0,1\}^b\to\{0,1\}^n$$
 Compression function

F is collision-resistant (CR) $\Rightarrow H$ is CR

[Damgård 89]



② If b=1, then prefix-free encoding is done for inputs.

Compression Function Construction

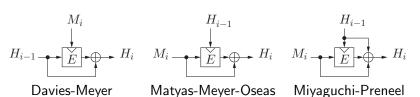
Customized (1990-)

- MDx family
 MD4, MD5; RIPEMD-160; SHA-1, SHA-224/256/384/512
- Whirlpool
- SHA-3 candidates

Using a block cipher

- Single block length (SBL): output-length = block-length
- ullet Double block length (DBL): output-length $= 2 \times \text{block-length}$

 $\begin{array}{lll} {\sf SHA-1/2} & {\sf DM \ mode \ using \ a \ dedicated \ block \ cipher \ SHACAL-1/2} \\ {\sf Whirlpool} & {\sf MP \ mode \ using \ a \ dedicated \ block \ cipher \ W} \end{array}$



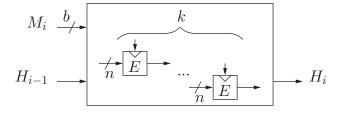
Outline

- Hash function using block cipher
 - Single/Double-block-length constructions
- Multi-property preservation
- Security properties of hash-function family
- Cryptographic scheme using CR

Rate

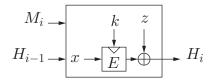
A measure of efficiency of a hash function using a block cipher ${\cal E}$

$$\mathsf{rate} = \frac{b}{n \times k}$$



PGV Model [Preneel, Govaerts, Vandewalle 93]

Model for SBL construction



$$E: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$$
$$x, k, z \in \{H_{i-1}, M_i, H_{i-1} \oplus M_i, const\}$$

- rate = 1
- $4^3 = 64 \text{ modes}$

Security of PGV Modes

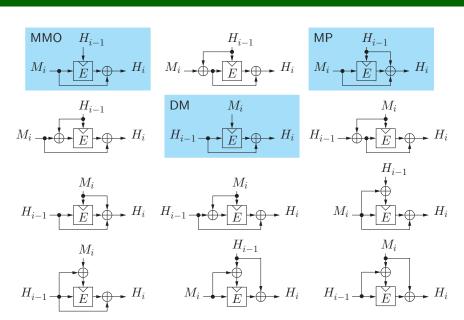
[Preneel, Govaerts and Vandewalle 93]

- Security analysis against several generic attacks
- 12 modes are collision-resistant (CR).

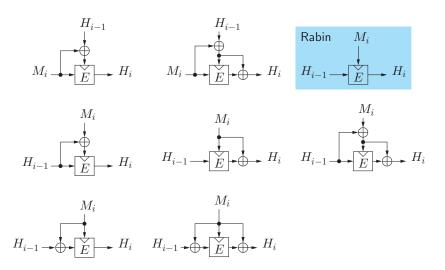
[Black, Rogaway and Shrimpton 02]

- Provable security analysis in the ideal cipher model
- The same 12 modes are CR.
- Other 8 modes are CR with Merkle-Damgård domain extension.

12 PGV Modes



8 PGV Modes



Ideal Cipher Model

Let E be an (n, κ) block cipher:

$$E: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n.$$

For each key k, $E(k, \cdot)$ is an **invertible random permutation**.

E is evaluated by two kinds of **oracle queries**:

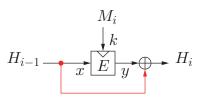
oracle	query	answer
\overline{E}	(key, plaintext)	ciphertext
E^{-1}	(key, ciphertext)	plaintext

Provable security in the ideal cipher model

covers cryptanalysis not using intenal structure of ${\cal E}$

Idea of the Proof

The DM mode is CR in the ideal cipher model [Merkle 89]



To compute $H_i = x \oplus y$, we ask

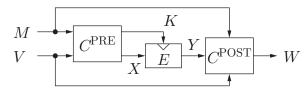
- \bullet (k,x) to E, and obtain random y, or
- \bullet (k,y) to E^{-1} , and obtain random x

In both cases, H_i is random.

Any collision attack is at most as effective as the birthday attack.

Stam Model (2009)

$$E: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$$



$$C^{\text{AUX}}(K, X, Y) = C^{\text{POST}}(C^{-\text{PRE}}(K, X), Y)$$

The compression function is CR and PR if

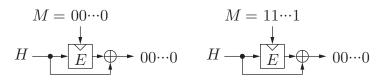
- C^{PRE} is bijective.
- For all M, V, $C^{\mathrm{POST}}(M,V,\cdot):Y\mapsto W$ is bijective.
- ullet For all K, Y, $C^{\mathrm{AUX}}(K,\cdot,Y):X\mapsto W$ is bijective.

Why Discuss CR in the Ideal Cipher Model?

An almost ideal cipher may not produce a CR compression function.

$$E_k(x) = \left\{ \begin{array}{ll} x & \text{if } k = 00 \cdots 0 \text{ or } 11 \cdots 1 \\ R_k(x) & \text{otherwise} \quad \left(R_k \text{ is a random permutation} \right) \end{array} \right.$$

There is a trivial collision of DM compression function using E:



Similar examples can be constructed for 12 CR modes in PGV model.

[Simon 98]

A CR HF cannot be constructed with a black-box OW permutation.

DBL Hash Function: Motivation

Any SBL hash function using AES is **not secure**.

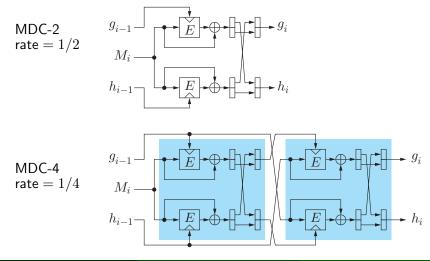
- Output length is 128 bit.
- ullet Complexity of birthday attack $pprox 2^{64}$.

Goal: DBL hash function using a block cipher with block-size n

• Complexity of collision attack $\approx 2^n$

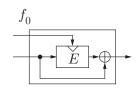
DBL Compression Functions: MDC-2 & MDC-4

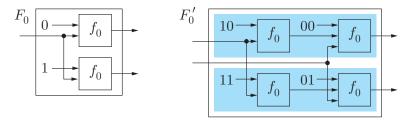
[Brachtl, Coppersmith, et.al. 88] Using an (n,n) block cipher



DBL Compression Functions: Merkle 89

Using DES or an (n,n) block cipher



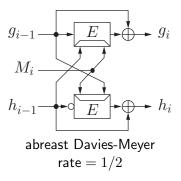


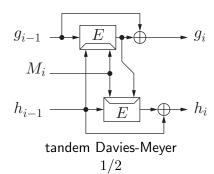
Constants are fed into the key of E.

rate < 0.276

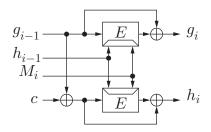
DBL Compression Functions: Abreast-/Tandem-DM

[Lai, Massey 92] Using an (n,2n) block cipher (n-bit plaintext, 2n-bit key)



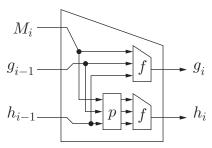


DBL Compression Functions: Hirose 06



- ullet c is a non-zero constant
 - rate = $\begin{cases} 1/2 & \text{with 256-bit key} \\ 1/4 & \text{with 192-bit key} \end{cases}$
 - only one key scheduling

Note) Based on [Nandi 05]. p is involution ($p = p^{-1}$)



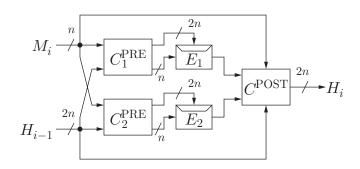
Security (Number of Oracle Queries)

Output length: 2n

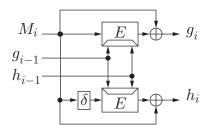
Attack	MDC-2	ab-DM	ta-DM	Hir
Collision	$\Omega(2^{0.6n})^{(1)}$	$\Theta(2^n)^{(2)}$	$\Omega(2^n/n)^{(3)}$	$\Theta(2^n)^{(4)}$
Preimage	$O(2^n)^{(5)}$	$\Theta(2^{2n})^{(6)}$	$\Theta(2^{2n})^{(6,7)}$	$\Theta(2^{2n})^{(6)}$

- Steinberger 06]
- [Fleischmann, Gorski, Lucks 09], [Lee, Kwon 09]
- 3 [Lee, Stam, Steinberger 10]
- 4 [Hirose 06]
- lacktriangle Requires $O(2^n)$ memory [Knudsen, Mendel, Rechberger, Thomsen 09]
- [Lee, Stam, Steinberger 11]
- **0** $O(2^n)$ if digest = 0^{2n} .

Özen-Stam Model (2010)



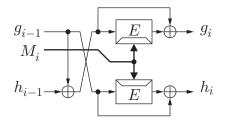
Jonsson & Robshaw 05

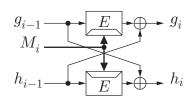


$$\frac{r}{\delta(r)} \begin{vmatrix} 00 \| r' & 01 \| r' & 10 \| r' & 11 \| r' \\ 01 \| r' & 10 \| r' & 11 \| r' & 00 \| r' \end{vmatrix}$$
$$\delta(r) = \delta((a)_2 \| r') = (a+1 \bmod 4)_2 \| r'$$

Constructions As Efficient As MDC-2

[Satoh, Haga, Kurosawa 99], [Hattori, Hirose, Yoshida 03]





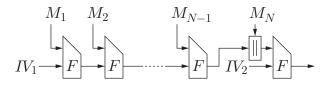
- ullet rate $= \frac{\kappa}{2n}$ with an (n,κ) block cipher
- As secure as MDC-2?

Introduced by [Bellare, Ristenpart 06]

Security reduction to compression function

Security properties: CR, PRO (IRO), PRF

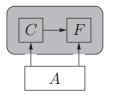
EMD (Enveloped Merkle-Damgård)

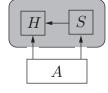


For PRF, IV_1 and IV_2 are replaced by independent secret keys.

Indifferentiability from RO (IRO)

[Maurer, Renner, Holenstein 04], [Coron, Dodis, Malinaud, Puniya 05]





- H is VIL RO
- F is FIL ideal primitive
 - Ideal block cipher
 - Random oracle
- ullet C is hash function construction using F
- ullet Simulator S tries to mimic F with access to oracle H

Definition

 C^F is indiff. from VIL RO (IRO) if no efficient adver A can tell apart

$$(C^F,F)$$
 and (H,S^H)

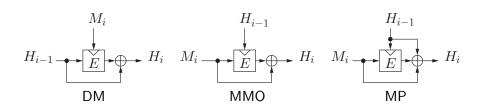
For block-cipher-based construction

Security reduction to underlying block cipher

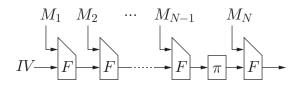
E.g.) DM, MMO, and MP are not IRO in the ideal cipher model.

E.g.) DM is not good for PRF since a message block is fed to the key.

Block ciphers are not designed for such usage!



MMO seems best among PGV [Hirose, Kuwakado 08, 09] Using MDP domain extension [Hirose, Park, Yun 07]

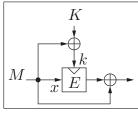


If F is MMO, then

- Hash function is CR and IRO in the ideal cipher model.
- **②** KIV mode is PRF if E is PRP under related-key attacks wrt π .

Cf.) MMO is adopted by Skein (a SHA-3 finalist).

An interesting example:



is one of the 12 secure PGV modes.

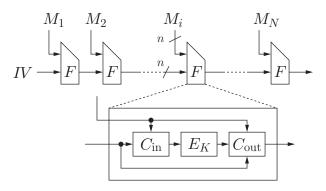
This mode is not a PRF if E satisfies

$$E_k(x) = E_{k \oplus d}(x \oplus d) \oplus d$$

for some const $d \neq 0^n$ (DES has this property for $d = 1^n$).

Permutation-Based Schemes: Impossibility

[Black, Cochran, Shrimpton 05]

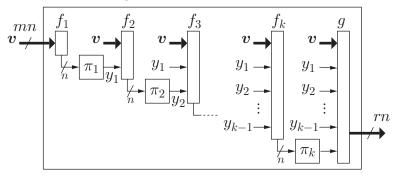


K is fixed

Collision can be found with $O(n + \log n)$ queries.

Permutation-Based Schemes: Security/Efficiency Tradeoff

[Rogaway, Steinberger 08]



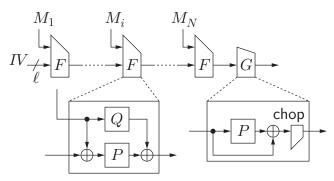
Collision can be found with $2^{(1-(m-r/2)/k)n}$ queries in the ideal permutation model.

\overline{m}	r	k	# of queries
2	1	2	$2^{n/4}$
$\overline{2}$	1	3	$2^{n/2}$

m	r	k	# of queries
3	2	4	$2^{n/2}$
3	2	5	$2^{3n/5}$

Permutation-Based Schemes: Grøstl

[Gauravaram, Knudsen, Matusiewicz, Mendel, Rechberger, Schläffer, Thomsen 09]

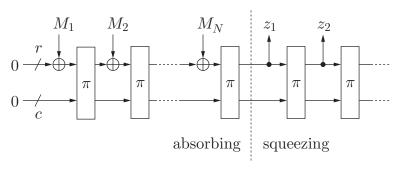


[Andreeva, Mennink, Preneel 10] IRO in the ideal permutation model

Number of queries $=\Theta(2^{\ell/2})$

Permutation-Based Schemes: Sponge

[Bertoni, Daemen, Peeters, van Assche 07]

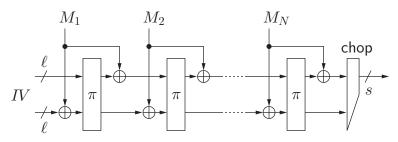


[Bertoni, Daemen, Peeters, van Assche 08] IRO in the ideal permutation model

Number of queries $=\Theta(2^{c/2})$

Permutation-Based Schemes: JH

[Wu 09]



[Bhattacharyya, Mandal, Nandi 10] IRO in the ideal permutation model

Number of queries $= \Omega(2^{\ell/3}) \qquad (\Omega(2^{\ell/2}) \text{ [CRYPTO 11 rump]})$

Security Properties of Hash-Function Family

[Rogaway, Shrimpton 04]

Hash-function Family $H: \mathcal{K} \times \mathcal{M} \to \mathcal{Y}$

Property	Key	Challenge
Pre	random	random
ePre	random	fixed
aPre	fixed	random
Sec	random	random
eSec	random	fixed
aSec	fixed	random
Coll	random	_

[&]quot;a" means always.

[&]quot;e" means everywhere.

Second Preimage Resistance

$$\begin{split} \operatorname{Adv}_{H}^{\operatorname{Sec}}(A) &= \\ \operatorname{Pr} \left[\begin{array}{c} K \overset{\$}{\leftarrow} \mathcal{K}; M \overset{\$}{\leftarrow} \{0,1\}^{m} \\ M' \overset{\$}{\leftarrow} A(K,M) \end{array} \right] : \begin{array}{c} M \neq M' \land \\ H_{K}(M) = H_{K}(M') \end{array} \right] \\ \operatorname{Adv}_{H}^{\operatorname{eSec}}(A) &= \\ \max_{M \in \{0,1\}^{m}} \left\{ \operatorname{Pr} \left[\begin{array}{c} K \overset{\$}{\leftarrow} \mathcal{K} \\ M' \overset{\$}{\leftarrow} A(K,M) \end{array} \right] : \begin{array}{c} M \neq M' \land \\ H_{K}(M) = H_{K}(M') \end{array} \right] \right\} \\ \operatorname{Adv}_{H}^{\operatorname{aSec}}(A) &= \\ \max_{K \in \mathcal{K}} \left\{ \operatorname{Pr} \left[\begin{array}{c} M \overset{\$}{\leftarrow} \{0,1\}^{m} \\ M' \overset{\$}{\leftarrow} A(K,Y) \end{array} \right] : \begin{array}{c} M \neq M' \land \\ H_{K}(M) = H_{K}(M') \end{array} \right] \right\} \end{split}$$

eSec is also called universal one-wayness (UOW) [Naor, Yung 89].

Universal One-Wayness (UOW)

Another two-stage definition [Naor, Yung 89]

- f 0 An adversary first selects input M.
- $oldsymbol{2}$ K is selected uniformly at random.

It is difficult to compute M' such that $H_K(M) = H_K(M') \wedge M \neq M'$.

Signature scheme using UOW hash-function family [Naor, Yung 89]

A UOW hash-function family is constructed from

- any one-way permutation [Naor, Yung 89].
- any one-way function [Rompel 90], [Katz, Koo 05].

Merkle-Damgård does not work [Bellare, Rogaway 97].

Example

$$h:\{0,1\}^n\times\{0,1\}^{m+n+c}\to\{0,1\}^{n+c}$$

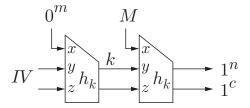
$$h_k(x, y, z) = \begin{cases} k \| f_k(x, y, z) & \text{if } y \neq k \\ 1^n \| 1^c & \text{if } y = k \end{cases}$$

where $f: \{0,1\}^n \times \{0,1\}^{m+n+c} \to \{0,1\}^c$.

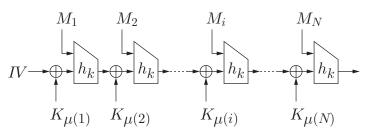
$$f$$
 is UOW $\Rightarrow h$ is UOW

$$h_k(x, y, z) = \begin{cases} k || f_k(x, y, z) & \text{if } y \neq k \\ 1^n || 1^c & \text{if } y = k \end{cases}$$

For any $M \in \{0,1\}^m$



[Shoup 00]



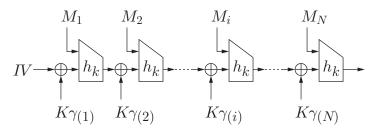
 $\mu(i) = \text{largest integer } \mu \text{ such that } 2^{\mu}|i$

k and $K_0, K_1, \dots, K_{\lfloor \log N \rfloor}$ are selected uniformly at random.

$\mathsf{Theorem}$

h is $UOW \Rightarrow the family above is <math>UOW$

Shoup's scheme is optimal among the following type [Mironov 01]



Theorem

For any γ ,

The family above is $UOW \Rightarrow |\gamma(\{1, 2, \dots, N\})| > \log N$

UOW Hash-Function Family from OW Permutation

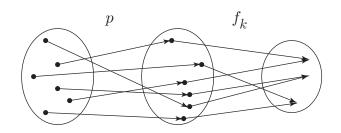
OW permutation $p:\{0,1\}^\ell \to \{0,1\}^\ell$

$$f: \mathcal{K} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell-1}$$

$$H:\mathcal{K} \times \{0,1\}^\ell \to \{0,1\}^{\ell-1} \quad \text{such that} \quad H_k = f_k \circ p$$

Theorem

f is a universal hash-function family $\Rightarrow H$ is UOW



Cascade of UOW Hash-Function Family

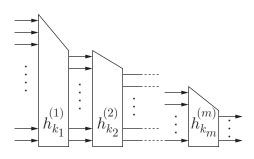
$$h^{(i)}: \mathcal{K}_i \times \{0, 1\}^{\ell_i} \to \{0, 1\}^{\ell_{i+1}} \qquad (1 \le i \le m)$$

$$H: (\mathcal{K}_1 \times \cdots \times \mathcal{K}_m) \times \{0,1\}^{\ell_1} \to \{0,1\}^{\ell_{m+1}}$$
 such that

$$H_{(k_1,\dots,k_m)} = h_{k_m}^{(m)} \circ h_{k_{m-1}}^{(m-1)} \circ \dots \circ h_{k_1}^{(1)}$$

Theorem

 $h^{(1)}, \ldots, h^{(m)}$ are $UOW \Rightarrow H$ is UOW



Cryptographic Schemes Using CR

CR hash function H

S selects input x uniformly at random, and sends y = H(x) to R.

- R has no knowledge on x other than $x \in H^{-1}(y)$ even if R is computationally unbounded.
- Computationally bounded S does not have $x' \neq x$ s.t. y = H(x').

Examples using the property above:

- Fail-stop signature [Damgård, Pedersen, Pfitzmann 93]
- Non-interactive string commitment statistically secure against computationally unbounded receiver [Halevi, Micali 96]

Non-interactive string commitment [Halevi, Micali 96]

$$\begin{array}{l} H:\{0,1\}^* \to \{0,1\}^\ell \quad \text{CR HF} \\ F=\{f \mid f:\{0,1\}^{O(n+\ell)} \to \{0,1\}^n\} & \text{Universal HF family} \end{array}$$

Commit For a committed string $x \in \{0,1\}^n$,

- **1** S selects uniformly at random $f \in F$ and $w \in \{0,1\}^{O(n+\ell)}$ satisfying x = f(w).
- ② computes y = H(w).
- \odot sends f, y to R.

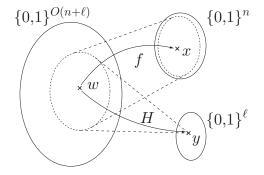
Open S sends w to R.

Non-interactive string commitment [Halevi, Micali 96]

Committed string $\,x\,$

Commit f and y

Open w



Statistically secure against computationally unbounded R

Conclusion

- Hash function using block cipher
 Single/Double-block-length constructions
- Multi-property preservation
- Security properties of hash-function family
- Cryptographic scheme using CR