Congruences and Residue Class Rings

(Chapter 2 of J. A. Buchmann, Introduction to Cryptography, 2nd Ed., 2004)

Shoichi Hirose

Faculty of Engineering, University of Fukui

Definition (2.1.1)

a is congruent to b modulo m if $m \mid b - a$.

 $a \equiv b \pmod{m}$.

Definition (Equivalence relation)

Let S be a non-empty set. A relation \sim is an equivalence relation on S if it satisfies

```
reflexivity a \sim a for \forall a \in S.
```

symmetry $a \sim b \Rightarrow b \sim a$ for $\forall a, b \in S$.

transitivity $a \sim b \wedge b \sim c \Rightarrow a \sim c$ for $\forall a, b, c \in S$.

Congruences

Lemma (2.1.3)

The followings are equivalent

$$a \equiv b \pmod{m},$$

2) There exists
$$\exists k \in \mathbb{Z}$$
 s.t. $b = a + k m$,

 $3 a \mod m = b \mod m.$

Residue class of $a \mod m$

$$\{b \,|\, b \equiv a \pmod{m}\} = a + m\mathbb{Z}$$

It is an equivalence class.

 $\mathbb{Z}/m\mathbb{Z}$ is the set of residue classes mod m. It has m elements.

$$\mathbb{Z}/m\mathbb{Z} = \{0 + m\mathbb{Z}, 1 + m\mathbb{Z}, 2 + m\mathbb{Z}, \dots, (m-1) + m\mathbb{Z}\}$$

A set of representatives for $\mathbb{Z}/m\mathbb{Z}$ is a set of integers containing exactly one element of each residue class mod m.

Example (2.1.5)

A set of representatives mod 3 contains an element of each of $0 + 3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z}$. Examples are $\{0, 1, 2\}, \{3, -2, 5\}, \{9, 16, 14\}$.

A set of representatives $\mod\,m$

$$\mathbb{Z}_m \triangleq \{0, 1, \dots, m-1\}$$

is the set of least nonnegative residues mod m.

Theorem (2.1.7)

 $a \equiv b \pmod{m} \wedge c \equiv d \pmod{m}$ implies

- $-a \equiv -b \pmod{m}$.
- $a + c \equiv b + d \pmod{m}$.
- $ac \equiv bd \pmod{m}$.

Semigroups

Definition (2.2.7)

(H,\circ) is called a semigroup if

- \circ is closed: $a \circ b \in H$ for every $a, b \in H$,
- \circ is associative: $(a \circ b) \circ c = a \circ (b \circ c)$ for every $a, b, c \in H$.

A semigroup is called commutative or abelian if $a \circ b = b \circ a$ for $\forall a, b \in H$.

Example (2.2.8)

$(\mathbb{Z},+),$ $(\mathbb{Z},\cdot),$ $(\mathbb{Z}/m\mathbb{Z},+),$ $(\mathbb{Z}/m\mathbb{Z},\cdot)$ are commutative semigroups.

Definition (2.2.9)

• A neutral element of a semigroup (H, \circ) is $e \in H$ s.t. $e \circ a = a \circ e = a$ for $\forall a \in H$.

• A semigroup (H, \circ) is called a monoid if it has a neutral element.

Definition (2.2.10)

Let e be a neutral element of a monoid (H, \circ) . $b \in H$ is called an inverse of $a \in H$ if $a \circ b = b \circ a = e$. If a has an inverse, then it is called invertible.

Example (2.2.11)

- The neutral element of $(\mathbb{Z}, +)$ is 0. The inverse of a is -a.
- The neutral element of (\mathbb{Z}, \cdot) is 1. The invertible elements are 1, -1.
- The neutral element of (ℤ/mℤ, +) is the residue class mℤ. The inverse of a + mℤ is -a + mℤ.

Groups

Definition (2.3.1)

A monoid is called a group if all of its elements are invertible.

Example (2.3.2)

- $(\mathbb{Z}, +)$ is an abelian group.
- (\mathbb{Z}, \cdot) is not a group.
- $(\mathbb{Z}/m\mathbb{Z}, +)$ is an abelian group.

Definition (2.3.4)

The order of a (semi)group is the number of its elements.

Example (2.3.5)

- $\bullet\,$ The additive group $\mathbb Z$ has infinite order.
- The additive group $\mathbb{Z}/m\mathbb{Z}$ has order m.

Definition (2.4.1)

A triplet $(R,+,\cdot)$ is called a ring if

- (R, +) is an abelian group,
- (R,\cdot) is a semigroup, and
- the distributivity law is satisfied: for every $x, y, z \in R$, $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(x+y) \cdot z = x \cdot z + y \cdot z$.

The ring is called commutative if (R, \cdot) is commutative. A unit element of the ring is a neutral element of (R, \cdot) .

Example (2.4.2)

- $(\mathbb{Z},+,\cdot)$ is a commutative ring with unit element 1.
- $(\mathbb{Z}/m\mathbb{Z}, +, \cdot)$ is a commutative ring with unit element $1 + m\mathbb{Z}$. It is called the residue class ring modulo m.

Definition (2.4.3)

Let $(R,+,\cdot)$ be a ring.

- $a \in R$ is called invertible or unit if a is invertible in (R, \cdot) .
- $a \in R$ is called zero divisor if $a \neq 0$ and there exists some nonzero $b \in R$ s.t. $a \cdot b = 0$ or $b \cdot a = 0$.

 $(R,+,\cdot)$ is simply denoted by R if it is clear which operaions are used.

The units of a commutative ring R form a group. It is called the unit group of R and is denoted by R^* .

Definition (2.5.1)

A commutative ring is called a field if all of its nonzero elements are invertible.

Example (2.5.2)

- The set of integers is not a field.
- The set of rational numbers is a field.
- The set of real numbers is a field.
- The set of complex numbers is a field.
- The residue class ring modulo a prime is a field.

Definition (2.6.1)

Let R be a ring and $a, n \in R$. a divides n if n = ab for $\exists b \in R$.

Theorem (2.6.2)

- The residue class $a + m\mathbb{Z}$ is invertible in $\mathbb{Z}/m\mathbb{Z}$ iff gcd(a, m) = 1.
- If gcd(a,m) = 1, then the inverse of $a + m\mathbb{Z}$ is unique.

Theorem (2.6.4)

The residue class ring $\mathbb{Z}/m\mathbb{Z}$ is a field iff m is prime.

Theorem (2.7.1)

Suppose that the residue classes modulo m are represented by their least non-negative representatives. Then, two residue classes modulo m can be

- added or subtracted using time and space O(size(m)),
- multiplied or divided using time $O(\operatorname{size}(m)^2)$ and space $O(\operatorname{size}(m))$.

Theorem (2.8.1)

The set of all invertible residue classes modulo m is a finite abelian group with respect to multiplication. It is called the multiplicative group of residues modulo m and is denoted by $(\mathbb{Z}/m\mathbb{Z})^*$.

Example (2.8.2, The multiplicative group of residues modulo 12) $(\mathbb{Z}/12\mathbb{Z})^* = \{1 + 12\mathbb{Z}, 5 + 12\mathbb{Z}, 7 + 12\mathbb{Z}, 11 + 12\mathbb{Z}\}.$

Definition (The Euler φ -function)

 $\varphi:\mathbb{N}\to\mathbb{N}$ such that

$$\varphi(m) = \left| \{ a \mid a \in \{1, 2, \dots, m\} \land \gcd(a, m) = 1 \} \right|$$

The order of $(\mathbb{Z}/m\mathbb{Z})^*$ is $\varphi(m)$.

Theorem (2.8.3)

$$p \text{ is prime} \Rightarrow \varphi(p) = p - 1.$$

Theorem (2.8.4)

$$\sum_{d|m,d>0}\varphi(d)=m \;\;.$$

Proof. It is easy to see that
$$\sum_{d|m,d>0} \varphi(d) = \sum_{d|m,d>0} \varphi(m/d)$$
.
 $\varphi(m/d) = |\{a \mid a \in \{1, 2, \dots, m/d\} \land \gcd(a, m/d) = 1\}|$
 $= |\{b \mid b \in \{1, 2, \dots, m\} \land \gcd(b, m) = d\}|$.

On the other hand,

$$\{1, 2, \dots, m\} = \bigcup_{d \mid m, d > 0} \{b \mid b \in \{1, 2, \dots, m\} \land \gcd(b, m) = d\}$$

.

Example
$$(m = 12)$$

$$\sum_{l \mid 12, d > 0} \varphi(d) = \varphi(1) + \varphi(2) + \varphi(3) + \varphi(4) + \varphi(6) + \varphi(12) = 12 .$$

$$\sum_{d \mid 12, d > 0} \varphi(12/d) = \varphi(12) + \varphi(6) + \varphi(4) + \varphi(3) + \varphi(2) + \varphi(1) .$$

Multiplicative Group of Residues mod \boldsymbol{m}

$$\begin{split} \varphi(1) &= |\{a \mid a \in \{1\} \land \gcd(a, 1) = 1\}| \\ &= |\{b \mid b \in \{1, \dots, 12\} \land \gcd(b, 12) = 12\}| = |\{12\}| \ . \\ \varphi(2) &= |\{a \mid a \in \{1, 2\} \land \gcd(a, 2) = 1\}| \\ &= |\{b \mid b \in \{1, \dots, 12\} \land \gcd(b, 12) = 6\}| = |\{6\}| \ . \\ \varphi(3) &= |\{a \mid a \in \{1, 2, 3\} \land \gcd(a, 3) = 1\}| \\ &= |\{b \mid b \in \{1, \dots, 12\} \land \gcd(b, 12) = 4\}| = |\{4, 8\}| \ . \\ \varphi(4) &= |\{a \mid a \in \{1, 2, 3, 4\} \land \gcd(a, 4) = 1\}| \\ &= |\{b \mid b \in \{1, \dots, 12\} \land \gcd(b, 12) = 3\}| = |\{3, 9\}| \ . \\ \varphi(6) &= |\{a \mid a \in \{1, 2, 3, 4, 5, 6\} \land \gcd(a, 6) = 1\}| \\ &= |\{b \mid b \in \{1, \dots, 12\} \land \gcd(b, 12) = 2\}| = |\{2, 10\}| \ . \\ \varphi(12) &= |\{a \mid a \in \{1, \dots, 12\} \land \gcd(a, 12) = 1\}| \\ &= |\{b \mid b \in \{1, \dots, 12\} \land \gcd(a, 12) = 1\}| \\ &= |\{b \mid b \in \{1, \dots, 12\} \land \gcd(a, 12) = 1\}| = |\{1, 5, 7, 11\}| \end{split}$$

•

Let G be a group multiplicatively written with neutral element 1.

Definition (2.9.1)

Let $g \in G$. If there exists a positive integer e such that $g^e = 1$, then the smallest such integer is called the order of g. Otherwise, the order of g is infinite.

The order of g in G is denoted by $\operatorname{order}_G(g)$.

Theorem (2.9.2)

Let $g \in G$ and $e \in \mathbb{Z}$. Then, $g^e = 1$ iff $\operatorname{order}_G(g) \mid e$.

Example (2.9.4, $(\mathbb{Z}/13\mathbb{Z})^*$)

k	1	2	3	4	5	6	7	8	9	10	11	12
$2^k \mod 13$	2	4	8	3	6	12	11	9	5	10	7	1
$4^k \mod 13$												

Theorem (2.9.5)

Suppose that $\operatorname{order}_G(g) = e$ and n is an integer. Then,

 $\operatorname{order}_G(g^n) = e / \operatorname{gcd}(e, n)$.

Proof. Let $k = \operatorname{order}_G(g^n)$. Since $(g^n)^{e/\operatorname{gcd}(e,n)} = (g^e)^{n/\operatorname{gcd}(e,n)} = 1$, $k \mid e/\operatorname{gcd}(e,n)$. Since $(g^n)^k = g^{nk} = 1$, $e \mid nk$. It implies $e/\operatorname{gcd}(e,n) \mid k$ since $\operatorname{gcd}(e/\operatorname{gcd}(e,n), n) = 1$. Thus, $k = e/\operatorname{gcd}(e,n)$.

Definition (2.10.1)

 $U\subseteq G$ is called a subgroup of G if U is a group with respect to the group operation of G.

Example (2.10.2)

For $\forall g \in G$, the set $\langle g \rangle = \{g^k \, | \, k \in \mathbb{Z}\}$ is a subgroup of G. It is called the subgroup generated by g.

Definition (2.10.4)

If $G = \langle g \rangle$ for $\exists g \in G$, then G is called cyclic and g is called a generator of G.

Theorem (2.10.6)

If G is finite and cyclic, then G has exactly $\varphi(|G|)$ generators and they are all of order |G|.

Definition

A map $f: X \to Y$ is called

- injective if $f(x) = f(x') \Rightarrow x = x'$ for $\forall x, x' \in X$.
- surjective if for $\forall y \in Y$ there exists $x \in X$ s.t. f(x) = y.
- bijective if it is injective and surjective.

Theorem (2.10.9)

If G is a finite group, then the order of each subgroup of G divides the order |G|.

Definition (2.10.10)

Let H be a subgroup of G. Then, |G|/|H| is called the index of H in G.

Theorem (2.11.1, Fermat's Little Theorem)

Let a and m be pisitive integers. Then,

$$gcd(a,m) = 1 \Rightarrow a^{\varphi(m)} \equiv 1 \pmod{m}$$

Theorem (2.11.2)

The order of every group element divides the group order.

Th. 2.11.2 follows from Th. 2.10.9.

Corollary (2.11.3)

 $g^{|G|} = 1$ for $\forall g \in G$.

Th. 2.11.1 follows from Cor. 2.11.3.

The square-and-multiply method

Let $(e_{k-1}, e_{k-2}, \ldots, e_1, e_0)$ be the binary representation of e, where $e_i \in \{0, 1\}$ and e_0 is the least significant bit.

Example

e =	$e_0 + 2e_1 + 2^2e_2 + 2^3e_3 = e_0 + 2(e_1 + 2(e_2 + 2e_3))$
1	$1^2 = 1$
2	$a^{e_3} 1 = a^{e_3}$
ß	$(a^{e_3})^2 = a^{2e_3}$
4	$a^{e_2}a^{2e_3} = a^{e_2 + 2e_3}$
6	$(a^{e_2+2e_3})^2 = a^{2(e_2+2e_3)}$
6	$a^{e_1}a^{2(e_2+2e_3)} = a^{e_1+2(e_2+2e_3)}$
7	$(a^{e_1+2(e_2+2e_3)})^2 = a^{2(e_1+2(e_2+2e_3))}$
8	$a^{e_0}a^{2(e_1+2(e_2+2e_3))} = a^{e_0+2(e_1+2(e_2+2e_3))} = a^e$

Fast Exponentiation

 $a^e \bmod n$ is computed with at most 2|e| modular multiplications (more precisely, $|e| + \mathrm{HW}(e))$

Corollary (2.12.3)

If e is an integer and $a \in \{0, 1, ..., m-1\}$, then $a^e \mod m$ can be computed with time $O(\text{size}(e)\text{size}(m)^2)$ and space O(size(e) + size(m)).

Let $b_{i,n-1}, b_{i,n-2}, \ldots, b_{i,0}$ be the binary expansion of e_i for $1 \le i \le k$.

$$\begin{split} \prod_{i=1}^{k} g_{i}^{e_{i}} &= \prod_{i=1}^{k} g_{i}^{b_{i,n-1}2^{n-1} + b_{i,n-2}2^{n-2} + \dots + b_{i,0}2^{0}} \\ &= \prod_{i=1}^{k} g_{i}^{b_{i,n-1}2^{n-1}} g_{i}^{b_{i,n-2}2^{n-2}} \cdots g_{i}^{b_{i,0}2^{0}} \\ &= \left(\prod_{i=1}^{k} g_{i}^{b_{i,n-1}2^{n-1}}\right) \left(\prod_{i=1}^{k} g_{i}^{b_{i,n-2}2^{n-2}}\right) \cdots \left(\prod_{i=1}^{k} g_{i}^{b_{i,0}2^{0}}\right) \\ &= \left(\prod_{i=1}^{k} g_{i}^{b_{i,n-1}}\right)^{2^{n-1}} \left(\prod_{i=1}^{k} g_{i}^{b_{i,n-2}}\right)^{2^{n-2}} \cdots \left(\prod_{i=1}^{k} g_{i}^{b_{i,0}}\right) \end{split}$$

Let
$$\prod_{i=1}^k g_i^{b_{i,j}} = G_j$$
 for $0 \le j \le n$. Then,

Fast Evaluation of Power Products

$$\prod_{i=1}^{k} g_i^{e_i} = (G_{n-1})^{2^{n-1}} (G_{n-2})^{2^{n-2}} \cdots (G_0)^{2^0}$$
$$= ((\cdots ((G_{n-1})^2 G_{n-2})^2 \cdots)G_1)^2 G_0$$

Precomputation

$$\prod_{i=1}^k g_i^{b_j} \quad \text{for all } (b_1,b_2,\ldots,b_k) \in \{0,1\}^k$$

How to compute the order of $g \in G$ when the prime factorization of |G| is known.

Theorem (2.14.1)

Let $|G| = \prod_{p||G|} p^{e(p)}$. Let f(p) be the greatest integer s.t. $g^{|G|/p^{f(p)}} = 1$. Then, $\prod_{p \in P} e^{(p) - f(p)}$

$$\operatorname{order}(g) = \prod_{p \mid \mid G \mid} p^{e(p) - f(p)}$$

Proof. Let $|G| = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$. Let $\operatorname{order}(g) = n$. Let $f(p_i) = f_i$. Since $n \mid |G|$,

$$n = p_1^{e_1'} p_2^{e_2'} \cdots p_k^{e_k'}$$

for $e'_i \leq e_i$. Since $n \mid |G|/p_i^{f_i}$, $e'_i \leq e_i - f_i$. If $e'_j \leq e_j - f_j$ for some j, then, for $f'_j = e_j - e'_j \geq f_j$, $g^{|G|/p_j^{f'_j}} = 1$. It contradicts the assumption that f_j is the greatest integer s.t. $g^{|G|/p_j^{f_j}} = 1$. Thus, $e'_j = e_j - f_j$. S. Hirose (U. Fukui) Congruences and Residue Class Rings 2

Corollary (2.14.3)

Let $n \in \mathbb{N}$. If $g^n = 1$ and $g^{n/p} \neq 1$ for every prime divisor p of n, then $\operatorname{order}(g) = n$.

Theorem (2.15.2)

Let m_1, m_2, \ldots, m_n be pairwise co-prime positive integers. Then, for integers a_1, a_2, \ldots, a_n ,

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \cdots \\ x \equiv a_n \pmod{m_n} \end{cases}$$

has a unique solution in $\{0, 1, \ldots, m-1\}$, where $m = \prod_{i=1}^{n} m_i$.

The Chinese Remainder Theorem (2/3)

The solution is

$$x = \left(\sum_{i=1}^{n} a_i \, y_i \, M_i\right) \bmod m,$$

where, for $1 \leq i \leq n$,

$$M_i = m/m_i,$$

$$y_i = M_i^{-1} \bmod n_i.$$

The Chinese Remainder Theorem (3/3)

Example

$$\left\{ \begin{array}{ll} x\equiv 2 \pmod{7} \\ x\equiv 6 \pmod{8} \\ x\equiv 7 \pmod{11} \right. \end{cases}$$

$$m = 7 \times 8 \times 11 = 616$$

$$M_1 = 88$$

$$M_2 = 77$$

$$M_3 = 56$$

$$y_1 = 88^{-1} \mod 7 = 4^{-1} \mod 7 = 2$$

$$y_2 = 77^{-1} \mod 8 = 5^{-1} \mod 8 = 5$$

$$y_3 = 56^{-1} \mod 11 = 1^{-1} \mod 11 = 1$$

 $x=2\times88\times2+6\times77\times5+7\times56\times1 \bmod 616=590$

Definition (2.16.1)

Let R_1, R_2, \ldots, R_n be rings. Their direct product $\prod_{i=1}^n R_i$ is the set of all $(r_1, r_2, \ldots, r_n) \in R_1 \times R_2 \times \cdots \times R_n$ with component-wise addition and multiplication.

- $\prod_{i=1}^{n} R_i$ is a ring.
- If R_i 's are commutative rings with unit elements e_i 's, then $\prod_{i=1}^n R_i$ is a commutative ring with unit element (e_1, \ldots, e_n) .

Definition (2.16.3)

Let $(X, \circ_1, \ldots, \circ_n)$ and $(Y, \diamond_1, \ldots, \diamond_n)$ be sets with n operations. $f: X \to Y$ is called a homomorphism if $f(a \circ_i b) = f(a) \diamond_i f(b)$ for every $a, b \in X$ and $1 \le i \le n$. If f is bijective, then it is called an isomorphism.

Example (2.16.4)

- If m is a positive integer, then the map $\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ s.t. $a \mapsto a + m\mathbb{Z}$ is a ring homomorphism.
- If G is a cyclic group of order n with generator g, then the map $\mathbb{Z}/n\mathbb{Z} \to G$ s.t. $e + n\mathbb{Z} \mapsto g^e$ is an isomorphism of groups.

Theorem (2.16.5)

Let m_1, m_2, \ldots, m_n be pairwise coprime integers and let $m = \prod_{i=1}^n m_i$. Then, the map

$$\mathbb{Z}/m\mathbb{Z} \to \prod_{i=1}^{n} \mathbb{Z}/m_i\mathbb{Z} \quad s.t. \quad a+m\mathbb{Z} \mapsto (a+m_1\mathbb{Z},\ldots,a+m_n\mathbb{Z})$$

is an isomorphism of rings.

Theorem (2.17.1)

Let m_1, \ldots, m_n be pairwise co-prime integers and $m = \prod_{i=1}^n m_i$ Then, $\varphi(m) = \prod_{i=1}^n \varphi(m_i).$

Proof. Th. 2.16.5 implies

$$(\mathbb{Z}/m\mathbb{Z})^* \to \prod_{i=1}^n (\mathbb{Z}/m_i\mathbb{Z})^* \quad \text{s.t.} \quad a+m\mathbb{Z} \mapsto (a+m_1\mathbb{Z},\ldots,a+m_n\mathbb{Z})$$

is an isomorphism of groups. Actually, for $x + m\mathbb{Z} \in \mathbb{Z}/m\mathbb{Z}$, $gcd(x,m) \neq 1$ iff $gcd(x,m_i) \neq 1$ for some *i*. Thus,

$$x + m\mathbb{Z} \notin (\mathbb{Z}/m\mathbb{Z})^* \Leftrightarrow x + m_i\mathbb{Z} \notin (\mathbb{Z}/m_i\mathbb{Z})^*$$
 for $\exists i$

Therefore, $\varphi(m) = |(\mathbb{Z}/m\mathbb{Z})^*| = \prod_{i=1}^n |(\mathbb{Z}/m_i\mathbb{Z})^*| = \prod_{i=1}^n \varphi(m_i).$

Theorem (2.17.2)

Let m>0 be an integer and $\prod_{p\,|\,m}p^{e(p)}$ be the prime factorization of m. Then,

$$\varphi(m) = \prod_{p \mid m} (p-1)p^{e(p)-1} = m \prod_{p \mid m} \frac{p-1}{p}$$

Proof. From Th. 2.17.1,

$$\varphi(m) = \prod_{p \mid m} \varphi(p^{e(p)})$$

Thus, the theorem follows from

$$\begin{split} \varphi(p^{e(p)}) &= |\{1, 2, \dots, p^{e(p)} - 1\}| - (\# \text{ of } p \text{'s multiples}) \\ &= p^{e(p)} - 1 - (p^{e(p)} - p)/p \\ &= (p-1)p^{e(p)-1} \ . \end{split}$$

Polynomials

R commutative ring with unit element $1 \neq 0$ polynomial in one variable over R

$$f(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

coefficients $a_0, \ldots, a_n \in R$

R[X] the set of all polynomials in the variable X

n degree of the polynomial f if $a_n \neq 0$ monomial $a_n X^n$

If f(r) = 0, then r is called zero of f.

sum of polynomials

product of polynomials

Polynomials over Fields (1/2)

Let K be a field.

Lemma (2.19.1)

The ring K[X] has no zero divisors.

Lemma (2.19.2)

$$f,g \in K[X] \land f,g \neq 0 \Rightarrow \deg(fg) = \deg(f) + \deg(g)$$

Theorem (2.19.3)

Let $f, g \in K[X]$ and $g \neq 0$. Then, there exists unique $q, r \in K[X]$ s.t. f = qg + r and r = 0 or $\deg(r) < \deg(g)$.

Example (2.19.4)

Let $K = \mathbb{Z}/2\mathbb{Z}$.

$$x^{3} + x + 1 = (x^{2} + x)(x + 1) + 1$$

Corollary (2.19.6)

Let $f \in K[x]$ and $f \neq 0$. If f(a) = 0, then f(x) = (x - a)q(x) for some $q \in K[x]$.

Corollary (2.19.8)

 $f \in K[x] \wedge f \neq 0 \Rightarrow f$ has at most $\deg(f)$ zeros

Proof. Let $n = \deg(f)$. If n = 0, then $f \neq 0$ has no zero. Let $n \ge 1$. If f(a) = 0, then f(x) = (x - a)q(x) and $\deg(q) = n - 1$. By the induction hypothesis, q has at most n - 1 zeros. Thus, f has at most n zeros.

Example (2.19.9)

- $x^2 + x \in (\mathbb{Z}/2\mathbb{Z})[x]$ has zeros 0 and 1 in $\mathbb{Z}/2\mathbb{Z}$.
- $x^2 + 1 \in (\mathbb{Z}/2\mathbb{Z})[x]$ has a zero 1 in $\mathbb{Z}/2\mathbb{Z}$.
- $x^2 + x + 1 \in (\mathbb{Z}/2\mathbb{Z})[x]$ has no zero in $\mathbb{Z}/2\mathbb{Z}$.

Construction of Finite Fields (1/2)

 $\operatorname{GF}(p^n)$ for any prime p and any integer $n\geq 1$

- GF stands for Galois field
- p is called the *characteristic* of $GF(p^n)$
- GF(p) is called a *prime field*

f irreducible polynomial of degree n in $(\mathbb{Z}/p\mathbb{Z})[X]$

The elements of $\mathrm{GF}(p^n)$ are residue classes mod f. residue class of $g\in (\mathbb{Z}/p\mathbb{Z})[X] \bmod f$

$$g + f(\mathbb{Z}/p\mathbb{Z})[X] = \{g + fh \mid h \in (\mathbb{Z}/p\mathbb{Z})[X]\}$$
$$= \{v \mid v \in (\mathbb{Z}/p\mathbb{Z})[X] \text{ and } v \equiv g \pmod{f}\}$$

The number of different residue classes mod f is p^n

Example (2.20.2)

Residue classes in $(\mathbb{Z}/2\mathbb{Z})[X] \mod f(X) = X^2 + X + 1$ are

- $0 + f(\mathbb{Z}/2\mathbb{Z})[X]$
- $1 + f(\mathbb{Z}/2\mathbb{Z})[X]$
- $X + f(\mathbb{Z}/2\mathbb{Z})[X]$
- $X + 1 + f(\mathbb{Z}/2\mathbb{Z})[X]$

They are simply denoted by 0, 1, X, X + 1, respectively.

It can be shown that the fields with two distinct irreducible polynomials in $(\mathbb{Z}/p\mathbb{Z})[X]$ of degree n are isomorphic.

Theorem (2.21.1)

Let K be a finite field with q elements. Then, for $\forall d \text{ s.t. } d \mid q-1$, there are exactly $\varphi(d)$ elements of order d in the unit group K^* .

Proof. Let $\psi(d)$ be the number of elements of order d in K^* . All the elements of order d are zeros of $x^d - 1$. Let $a \in K^*$ be an element of order d. Then, the zeros of $x^d - 1$ are a^e $(e = 0, 1, \ldots, d - 1)$. a^e is of order d iff gcd(e, d) = 1 (Cor. 2.19.8). Thus, $\psi(d) > 0 \Rightarrow \psi(d) = \varphi(d)$. If $\psi(d) = 0$ for $\exists d$ s.t. $d \mid q - 1$. Then,

$$q-1 = \sum_{d \mid q-1} \psi(d) < \sum_{d \mid q-1} \varphi(d)$$

which contradicts Th. 2.8.4.

Corollary (2.21.3)

Let K be a finite field with q elements. Then, the unit group K^* is cyclic of order q-1. It has exactly $\varphi(q-1)$ generators.

Structure of the Multiplicative Group of Residues Modulo a Prime Number

Corollary

For any prime p, the multiplicative group of residues mod p is cyclic of order p - 1.

If the residue class $a + p\mathbb{Z}$ generates the multiplicative group of residues $(\mathbb{Z}/p\mathbb{Z})^*$, then a is called a primitive root mod p.

Structure of the Multiplicative Group of Residues Modulo a Prime Number

Example

For $(\mathbb{Z}/11\mathbb{Z})^*$, the number of the primitive elements is $\varphi(10) = 4$.

	1	2	3	4	5	6	7	8	9	10	ord.
1	1	1	1	1	1	1	1	1	1	1	1
2	2	4	8	5	10	9	7	3	6	1	10
3	3	9	5	4	1	3	9	5	4	1	5
4	4	5	9	3	1	4	5	9	3	1	5
5	5	3	4	9	1	5	3	4	9	1	5
6	6	3	7	9	10	5	8	4	2	1	10
7	7	5	2	3	10	4	6	9	8	1	10
8	8	9	6	4	10	3	2	5	7	1	10
9	9	4	3	5	1	9	4	3	5	1	5
10	10	1	10	1	10	1	10	1	10	1	2