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Definition (2.1.1)

a is congruent to b modulo m if m|b — a.

a=b (modm) .

Definition (Equivalence relation)
Let S be a non-empty set. A relation ~ is an equivalence relation on §' if
it satisfies

reflexivity a ~ a for Ya € S.

symmetry a ~ b=-b~ a for Va,b € S.

transitivity a ~bAb~c= a ~ cfor Va,b,c € S.
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Congruences

Lemma (2.1.3)

The followings are equivalent
® a=0b (mod m),
@® There exists Ak € Z s.t. b=a + km,

® a mod m = b mod m.
Residue class of a modulo m
{b|b=a (mod m)} =a+ mZ
It is an equivalence class.
Z/mZ is the set of residue classes mod m. It has m elements.
Z/mZ ={0+4+ mZ,1 +mZ,2+mZ,...,(m — 1)+ mZ}
A set of representatives for Z/mZ is a set of integers containing exactly

one element of each residue class mod m.
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Example (2.1.5)

A set of representatives mod 3 contains an element of each of
0+ 3Z,1+ 3Z,2 + 3Z. Examples are {0,1,2},{3,—-2,5},{9, 16, 14}.

A set of representatives mod m
Zm 2{0,1,...,m — 1}
is the set of least nonnegative residues mod m.

Theorem (2.1.7)

a=b (mod m) Ac=d (mod m) implies

e —a=—b (mod m).
e atc=b+d (modm).

e ac = bd (mod m).
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Definition (2.2.7)

(H,o) is called a semigroup if

e oisclosed: aob e H for every a,b € H,
e o is associative: (aob)oc=ao (boc) for every a,b,c € H.

A semigroup is called commutative or abelian if aob =boa for Va,b € H.

Example (2.2.8)
(Z,+), (Z,-), (Z/mZ,+), (Z/mZ,-) are commutative semigroups.
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Definition (2.2.9)

e A neutral element of a semigroup (H,o) is e € H s.t.
eoa=aoe=aforVaec H.

e A semigroup (H,o) is called a monoid if it has a neutral element.

Definition (2.2.10)

Let e be a neutral element of a monoid (H, o). b € H is called an inverse
ofa€ H ifaob=boa =e. If a has an inverse, then it is called invertible.

Example (2.2.11)
e The neutral element of (Z,+) is 0. The inverse of a is —a.
e The neutral element of (Z,-) is 1. The invertible elements are 1, —1.

e The neutral element of (Z/mZ,+) is the residue class mZ. The
inverse of a + mZ is —a + mZ.
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Definition (2.3.1)

A monoid is called a group if all of its elements are invertible.

Example (2.3.2)

e (Z,+) is an abelian group.

e (Z,-) is not a group.
e (Z/mZ,+) is an abelian group.

Definition (2.3.4)

The order of a (semi)group is the number of its elements.

Example (2.3.5)
e The additive group Z has infinite order.
e The additive group Z/mZ has order m.
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Residue Class Ring
Definition (2.4.1)

A triplet (R, +,-) is called a ring if
e (R,+) is an abelian group,

e (R,-) is a semigroup, and
e the distributivity law is satisfied: for every x,y, z € R,
z-(y+z2)=x-y+x-zand (v+y) - z2=2-2+y- =z
The ring is called commutative if (R,-) is commutative. A unit element of
the ring is a neutral element of (R, ).

Example (2.4.2)

e (Z,+,-) is a commutative ring with unit element 1.

e (Z/mZ,+,-) is a commutative ring with unit element 1 + mZ. It is
called the residue class ring modulo m.
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Residue Class Ring

Definition (2.4.3)
Let (R, +,-) be a ring.
e a € Ris called invertible or unit if a is invertible in (R, ).

e a € R is called zero divisor if a £ 0 and there exists some nonzero
beRst.a-b=0orb-a=0.

(R, +,-) is simply denoted by R if it is clear which operaions are used.

The units of a commutative ring R form a group. It is called the unit
group of R and is denoted by R*.
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Definition (2.5.1)

A commutative ring is called a field if all of its nonzero elements are
invertible.

Example (2.5.2)

e The set of integers is not a field.

e The set of rational numbers is a field.

e The set of real numbers is a field.

The set of complex numbers is a field.

The residue class ring modulo a prime is a field.
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Division in the Residue Class Ring

Definition (2.6.1)

Let R be a ring and a,n € R. a divides n if n = ab for b € R.

Theorem (2.6.2)

e The residue class a + mZ is invertible in Z./mZ iff ged(a,m) = 1.

e Ifged(a,m) = 1, then the inverse of a + mZ is unique.

Theorem (2.6.4)

The residue class ring Z/mZ is a field iff m is prime.
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Analysis of the Operations in the Residue Class Ring

Theorem (2.7.1)

Suppose that the residue classes modulo m are represented by their least
non-negative representatives. Then, two residue classes modulo m can be

e added or subtracted using time and space O(size(m)),

o multiplied or divided using time O(size(m)?) and space O(size(m)).
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Multiplicative Group of Residues mod m

Theorem (2.8.1)

The set of all invertible residue classes modulo m is a finite abelian group
with respect to multiplication. It is called the multiplicative group of
residues modulo m and is denoted by (Z/mZ)*.

Example (2.8.2, The multiplicative group of residues modulo 12)
(Z/122)* = {1 4+ 12Z,5 + 12Z,7 + 12Z, 11 + 12Z}.

Definition (The Euler p-function)

¢ : N — N such that

o(m) = ‘{a|a6{1,2,...,m}/\gcd(a,m):1} .

The order of (Z/mZ)* is p(m).
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Multiplicative Group of Residues mod m
Theorem (2.8.3)

p is prime = o(p) = p — 1.

Theorem (2.8.4)

Y eld)=m .

dlm,d>0

Proof. It is easy to see that } ., ;o0 P(d) = D 440 P(M/d).
e(m/d) ={ala € {1,2,...,m/d} A ged(a,m/d) = 1}|
=|{b|be{1,2,...,m} Aged(b,m)=d}| .
On the other hand,

{1,2,....m}= | J {olbef{L,2,...,m} Aged(b,m) =d} .
d|lm,d>0
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Multiplicative Group of Residues mod m

Example (m = 12)

D> wld) = o(1) + ©(2) + ©(3) + (4) + 9(6) + p(12) =12 .
d|12,d>0

> e(12/d) = (12) + (6) + 9(4) + (3) + @(2) + (1) -
d|12,d>0
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Multiplicative Group of Residues mod m

¢(1) =[{ala € {1} Aged(a,1) = 1}
=|{b|be{l,...,12} Aged(b,12) = 12}| = [{12}] .
©(2) = {ala € {1,2} Aged(a, 2) = 1}
=|{b|be{l,...,12} Aged(b,12) = 6}| = |{6}] .
©(3) = |{ala €{1,2,3} Aged(a,3) =1}
=|{blbe{1,...,12} Aged(b,12) =4} = |{4,8}] .
v(4) =|{ala €{1,2,3,4} Agcd(a,4) = 1}|
=|{b|be{l,...,12} Aged(b,12) = 3} = [{3,9}] .
0(6) =|{ala €{1,2,3,4,5,6} A ged(a,6) = 1}|
=|{b|be{l,...,12} Aged(b,12) = 2} = |{2,10}] .
o(12) = |{a|a € {1,...,12} A ged(a, 12) = 1}
= {b|be{1,...,12} Aged(a,12) = 1}| = |{1,5,7, 11}| .
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Order of Group Elements

Let G be a group multiplicatively written with neutral element 1.

Definition (2.9.1)

Let g € G. If there exists a positive integer e such that ¢g¢ = 1, then the
smallest such integer is called the order of g. Otherwise, the order of g is
infinite.

The order of g in G is denoted by orderg(g).

Theorem (2.9.2)

Let g € G and e € Z. Then, g¢ = 1 iff orderg(g) | e.

Example (2.9.4, (Z/137Z)*)

k|1]2[3]4[5] 6] 7|8]9]10]11]12]
2"mod13 [2[4[8[3[6]12[11[9[5]10] 7] 1
4% mod 13
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Order of Group Elements

Theorem (2.9.5)

Suppose that orderi(g) = e and n is an integer. Then,

orderg(g") = e/ ged(e,n) .

Proof. Let k = orderg(g"). Since (g")¢/ged(en) = (ge)n/gedlen) — 1,
k|e/ged(e,n).

Since (g")* = g™ =1, e | nk. It implies e/ gcd(e,n) | k since

ged(e/ ged(e,n),n) = 1.

Thus, k = ¢/ ged(e,n). O
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Subgroups
Definition (2.10.1)

U C G is called a subgroup of G if U is a group with respect to the group
operation of G.

Example (2.10.2)

For Vg € G, the set (g) = {¢¥ | k € Z} is a subgroup of G. It is called the
subgroup generated by g.

Definition (2.10.4)

If G = (g) for 3g € G, then G is called cyclic and g is called a generator
of G.
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Subgroups
Theorem (2.10.6)

If G is finite and cyclic, then G has exactly ©(|G|) generators and they are
all of order |G]|.

Amap f: X =Y is called
e injective if f(z) = f(2') = x =2’ for Va,2' € X.
e surjective if for Vy € Y there exists = € X s.t. f(x) =y.

e bijective if it is injective and surjective.

Theorem (2.10.9)

If G is a finite group, then the order of each subgroup of G divides the
order |G|.
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Subgroups

Definition (2.10.10)
Let H be a subgroup of G. Then, |G|/|H| is called the index of H in G.
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Fermat’s Little Theorem
Theorem (2.11.1, Fermat's Little Theorem)

Let a and m be pisitive integers. Then,

ged(a,m) =1=a?™ =1 (mod m) .

Theorem (2.11.2)

The order of every group element divides the group order.

Th. 2.11.2 follows from Th. 2.10.9.
Corollary (2.11.3)
g%l =1 forvg € G.

Th. 2.11.1 follows from Cor. 2.11.3.
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Fast Exponentiation

The square-and-multiply method

Let (ex—1,€k—2,-..,€1,€p) be the binary representation of e, where
e; € {0,1} and eq is the least significant bit.

Example

e =eg+ 2e1 + 22%es + 23e3 = eg + 2(e1 + 2(e2 + 2e3))
01’=1
D a1 =a"
9 (a63)2 _ a263
O a2q2% — ge2t2es
(5 (a62+263)2 _ az(e2+2e3)
@ acta2(e2t20) — ge1+2(ea+2es)
7Y (ae1+2(ez+2e3))2 — g2(e1+2(e2+2e3))

@ aeoa2(61+2(82+263)) — a60+2(61+2(62+2e3)) — ae
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Fast Exponentiation

a® mod n is computed with at most 2|e| modular multiplications (more
precisely, |e] + HW (e))

Corollary (2.12.3)

If e is an integer and a € {0,1,...,m — 1}, then a® mod m can be
computed with time O(size(e)size(m)?) and space O(size(e) + size(m)).
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Fast Evaluation of Power Products

Let b;5,—1,bin—2,...,b;0 be the binary expansion of e; for 1 <i <k.

Hg Hgl’” 1277 by 2227 2 by 20

=1
k 1 2 0
b" 12"~ b" _92M~ b"02
:Hglln gzzn gzz
=1
k b L k b 9 k —
12" 22" i 02
=1L L i
=1 =1 i=1
277,71 2n72

k k
bimo1 bin_o bio
= {1l [T - (11"
=1 =1 =1

k
bi ; .
Let Hgi“ =G for 0 < j < n. Then,
=1
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Fast Evaluation of Power Products

k
L6 = o™ Gl (G0
= ((-+- ((Gn=1)*Gn—2)*-+-)G1)*Gy

Precomputation

ng for all (b1, by, ..., b) € {0,1}*
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Computation of Element Orders

How to compute the order of g € G when the prime factorization of |G| is
known.

Theorem (2.14.1)
Let |G| = Hp||G|pe(p). Let f(p) be the greatest integer s.t. gCl/

Then,
order(g H pe®@)—1()
plIG|

pf () -1

Proof. Let |G| = p{'p5? - - - pi¥. Let order(g) = n. Let f(p;) = fi. Since
n |G, o ,
€ e e
n = p11p22 .. pkk
for €] < e;. Since n | |G\/p e, <e — fi. If e} < ej — f; for some j,

!

£
then, for fi =e; — e’ > fj, g!€1/P" = 1. It contradicts the assumption

f.
that f; is the greatest integer s.t. gI€1/P" = 1. Thus, e; =ej— fj. O
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Computation of Element Orders

Corollary (2.14.3)

Let n e N. If g" =1 and ¢"/P # 1 for every prime divisor p of n, then
order(g) = n.
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The Chinese Remainder Theorem (1/3)

Theorem (2.15.2)

Let m1,mo, ..., m, be pairwise co-prime positive integers. Then, for
integers ay, as, ..., an,

r=a; (modm)

x=ay (mod my)

r=a, (modmy)

has a unique solution in {0,1,...,m — 1}, where m =[], m;.
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The Chinese Remainder Theorem (2/3)

The solution is

n
T = Z a; Y; Ml mod m,
i=1
where, for 1 <3 <n,

Mi = m/mi,
Y = M; ™! mod n,;.

S. Hirose (U. Fukui) Congruences and Residue Class Rings 30 / 44



The Chinese Remainder Theorem (3/3)

Example

(mod 7)
(mod 8)
(mod 11)

8 8 8
11l
N oW

m=7x8x11 =616

M; =88
My =177
M3 = 56

y1 =88 'mod7=4"'mod7=2
Yo =77 'mod 8 =5"'mod 8 =5
y3=56""mod 11 =1"'mod 11 =1

T=2xX88x24+6xT77x5+7x56x1mod616 =590
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Decomposition of the Residue Class Ring
Definition (2.16.1)

Let R, Ro, ..., R, be rings. Their direct product H?Zl R; is the set of all
(ri,7me,...,m) € Ry X Ry X -+ X R, with component-wise addition and
multiplication.

e [[iL, Riis aring.
o If R;'s are commutative rings with unit elements e;'s, then H?:l R; is
a commutative ring with unit element (eq,...,e,).

Definition (2.16.3)

Let (X,01,...,0,) and (Y,©1,...,9,) be sets with n operarions.
f:X — Y is called a homomorphism if f(ao; b) = f(a)o; f(b) for every
a,be X and 1 <i <n. If fis bijective, then it is called an isomorphism.
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Decomposition of the Residue Class Ring

Example (2.16.4)

e If m is a positive integer, then the map Z — Z/mZ s.t. a — a + mZ
is a ring homomorphism.

e If G is a cyclic group of order n with generator g, then the map
Z/nZ — G s.t. e +nZ — g is an isomorphism of groups.

Theorem (2.16.5)

Let mi,ma, ..., my be pairwise coprime integers and let m = [, m;.
Then, the map

n
Z]mZ — HZ/miZ st. a+mZ— (a+miZ,...,a+mpZ)
i=1

is an isomorphism of rings.
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A Formula for the Euler p-Function (1/2)

Theorem (2.17.1)

Let my,...,my be pairwise co-prime integers and m = [[;"_; m; Then,
p(m) = [Ii=; o(mi).

Proof. Th. 2.16.5 implies

n
(Z/mZ)* — [[(Z/miZ)* st. a+mZw (a+miZ,... a+m,Z)
=1

is an isomorphism of groups. Actually, for x + mZ € Z/mZ,
ged(x,m) # 1 iff ged(z, m;) # 1 for some i. Thus,

x+mZL & (Z/mL)" < x+mZ & (Z/m;Z)* for Ji .

Therefore, o(m) = [(Z/mZ)*| = 11, |(Z/miZ)*| = Ty ¢(mi). O
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A Formula for the Euler p-Function (2/2)

Theorem (2.17.2)

Let m > 0 be an integer and Hmmpe(p) be the prime factorization of m.

Then, .
om) = [[-p®@=m[[ 2= .

p|m plm
Proof. From Th. 2.17.1,
p(m) =[] (™) .
p|m
Thus, the theorem follows from

p(p®) = [{1,2,...,p"®) — 1} — (# of p's multiples)
=p® —1— (P —p)/p
= (p—1)p®»~" .
O
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Polynomials

R commutative ring with unit element 1 # 0

polynomial in one variable over R
fX)=an X" +an 1 X" 1+ + a1 X +ag

coefficients ag,...,a, € R

R[X] the set of all polynomials in the variable X
n degree of the polynomial f if a,, # 0
monomial a, X"

If f(r) =0, then r is called zero of f.

sum of polynomials

product of polynomials
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Polynomials over Fields (1/2)

Let K be a field.

Lemma (2.19.1)

The ring K[X] has no zero divisors.

Lemma (2.19.2)

fr9 € K[X]A f,g# 0= deg(fg) = deg(f) + deg(g)

Theorem (2.19.3)

Let f,g € K[X] and g # 0. Then, there exists unique q,r € K[X] s.t.
f=qg+randr =0 ordeg(r) < deg(g).

Example (2.19.4)
Let K = Z/27Z.

B rr+l=(2+z)(z+1)+1
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Polynomials over Fields (2/2)

Corollary (2.19.6)

Let f € K[z] and f #0. If f(a) =0, then f(z) = (x — a)q(x) for some
q € Klx].

Corollary (2.19.8)
f e K[x] A f#0= f has at most deg(f) zeros

Proof. Let n = deg(f). If n =0, then f # 0 has no zero. Let n > 1. If
f(a) =0, then f(z) = (z — a)q(z) and deg(q) = n — 1. By the induction
hypothesis, ¢ has at most n — 1 zeros. Thus, f has at most n zeros.

Example (2.19.9)
e 22 +x € (Z/2Z)[x] has zeros 0 and 1 in Z/2Z.
e 22 +1 € (Z/27Z)[z] has a zero 1 in Z/27Z.
e 22+ 2+ 1€ (Z/2Z)[x] has no zero in Z/27Z.
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Construction of Finite Fields (1/2)

GF(p™) for any prime p and any integer n > 1
e GF stands for Galois field
e pis called the characteristic of GF(p™)
o GF(p) is called a prime field
f irreducible polynomial of degree n in (Z/pZ)[X]

The elements of GF(p™) are residue classes mod f.
residue class of g € (Z/pZ)[X] mod f

9+ f(Z/pL)[X] = {g+ fh|h € (Z/pZ)[X]}
={v|lve (Z/pZ)[X] andv=g (mod f)}

The number of different residue classes mod f is p™
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Construction of Finite Fields (2/2)

Example (2.20.2)
Residue classes in (Z/27)[X] mod f(X) = X2+ X +1 are
e 0+ f(Z/2Z)[X]
o 1+ f(Z/2Z)[X]
o X + f(Z/22)[X]
e X +1+4 f(Z/2Z)[X]
They are simply denoted by 0, 1, X, X + 1, respectively.

It can be shown that the fields with two distinct irreducible polynomials in
(Z/pZ)[X] of degree n are isomorphic.
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The Structure of the Unit Group of Finite Fields (1/2)

Theorem (2.21.1)

Let K be a finite field with q elements. Then, for Vd s.t. d|q — 1, there
are exactly p(d) elements of order d in the unit group K*.

Proof. Let 1 (d) be the number of elements of order d in K*. All the
elements of order d are zeros of z% — 1.

Let a € K* be an element of order d. Then, the zeros of z% — 1 are a®
(e=0,1,...,d—1). a® is of order d iff gcd(e,d) =1 (Cor. 2.19.8). Thus,

¥(d) > 0= ¢(d) = ¢(d).
If 1»(d) =0 for 3d s.t. d|q— 1. Then,

g—1= > 9d)< > o)

dlq—1 dlg—1

which contradicts Th. 2.8.4. O
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The Structure of the Unit Group of Finite Fields (2/2)

Corollary (2.21.3)

Let K be a finite field with q elements. Then, the unit group K* is cyclic
of order ¢ — 1. It has exactly ¢(q — 1) generators.
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Structure of the Multiplicative Group of Residues Modulo a
Prime Number

Corollary

For any prime p, the multiplicative group of residues mod p is cyclic of
order p — 1.

If the residue class a + pZ generates the multiplicative group of residues
(Z/pZ)*, then a is called a primitive root mod p.

S. Hirose (U. Fukui) Congruences and Residue Class Rings 43 / 44



Structure of the Multiplicative Group of Residues Modulo a
Prime Number

For (Z/11Z)*, the number of the primitive elements is ¢(10) = 4.

| | 1]2] 3[4] 5[6] 7[8] 9]10] ord. |
1 1J1] 171 1J1] 1J1] 1] 1 1
2 274] 8[5]10]9] 7[3] 6] 1| 10
3 3[9] 5[4 1[3] 9|5 4] 1 5
4l 45 93] 1]4] 5]9] 3] 1 5
50 53] 4[9] 1|5] 3[4] 9] 1 5
6| 6[3] 7[9]10|5] 84| 2] 1] 10
701 715 2[3[10[4] 69| 8] 1] 10
8l 8l9| 6[4]10[3] 2|5] 7] 1] 10
of 94| 3[5] 19| 4[3] 5] 1 5
10ff10]1]10][1]10][1]10[1]10] 1 2
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