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Congruences

Definition (2.1.1)

a is congruent to b modulo m if m | b− a.

a ≡ b (mod m) .

Definition (Equivalence relation)

Let S be a non-empty set. A relation ∼ is an equivalence relation on S if
it satisfies

reflexivity a ∼ a for ∀a ∈ S.

symmetry a ∼ b⇒ b ∼ a for ∀a, b ∈ S.

transitivity a ∼ b ∧ b ∼ c⇒ a ∼ c for ∀a, b, c ∈ S.
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Congruences

Lemma (2.1.3)

The followings are equivalent

1 a ≡ b (mod m),

2 There exists ∃k ∈ Z s.t. b = a+ km,

3 a mod m = b mod m.

Residue class of a modulo m

{b | b ≡ a (mod m)} = a+mZ

It is an equivalence class.

Z/mZ is the set of residue classes mod m. It has m elements.

Z/mZ = {0 +mZ, 1 +mZ, 2 +mZ, . . . , (m− 1) +mZ}

A set of representatives for Z/mZ is a set of integers containing exactly

one element of each residue class mod m.
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Congruences

Example (2.1.5)

A set of representatives mod 3 contains an element of each of
0 + 3Z, 1 + 3Z, 2 + 3Z. Examples are {0, 1, 2}, {3,−2, 5}, {9, 16, 14}.

A set of representatives mod m

Zm , {0, 1, . . . ,m− 1}

is the set of least nonnegative residues mod m.

Theorem (2.1.7)

a ≡ b (mod m) ∧ c ≡ d (mod m) implies

• −a ≡ −b (mod m).

• a+ c ≡ b+ d (mod m).

• ac ≡ bd (mod m).
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Semigroups

Definition (2.2.7)

(H, ◦) is called a semigroup if

• ◦ is closed: a ◦ b ∈ H for every a, b ∈ H,

• ◦ is associative: (a ◦ b) ◦ c = a ◦ (b ◦ c) for every a, b, c ∈ H.

A semigroup is called commutative or abelian if a ◦ b = b ◦ a for ∀a, b ∈ H.

Example (2.2.8)

(Z,+), (Z, ·), (Z/mZ,+), (Z/mZ, ·) are commutative semigroups.
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Semigroups

Definition (2.2.9)

• A neutral element of a semigroup (H, ◦) is e ∈ H s.t.
e ◦ a = a ◦ e = a for ∀a ∈ H.

• A semigroup (H, ◦) is called a monoid if it has a neutral element.

Definition (2.2.10)

Let e be a neutral element of a monoid (H, ◦). b ∈ H is called an inverse
of a ∈ H if a ◦ b = b ◦ a = e. If a has an inverse, then it is called invertible.

Example (2.2.11)

• The neutral element of (Z,+) is 0. The inverse of a is −a.

• The neutral element of (Z, ·) is 1. The invertible elements are 1,−1.

• The neutral element of (Z/mZ,+) is the residue class mZ. The
inverse of a+mZ is −a+mZ.
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Groups

Definition (2.3.1)

A monoid is called a group if all of its elements are invertible.

Example (2.3.2)

• (Z,+) is an abelian group.

• (Z, ·) is not a group.

• (Z/mZ,+) is an abelian group.

Definition (2.3.4)

The order of a (semi)group is the number of its elements.

Example (2.3.5)

• The additive group Z has infinite order.

• The additive group Z/mZ has order m.
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Residue Class Ring

Definition (2.4.1)

A triplet (R,+, ·) is called a ring if

• (R,+) is an abelian group,

• (R, ·) is a semigroup, and

• the distributivity law is satisfied: for every x, y, z ∈ R,
x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z.

The ring is called commutative if (R, ·) is commutative. A unit element of
the ring is a neutral element of (R, ·).

Example (2.4.2)

• (Z,+, ·) is a commutative ring with unit element 1.

• (Z/mZ,+, ·) is a commutative ring with unit element 1 +mZ. It is
called the residue class ring modulo m.
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Residue Class Ring

Definition (2.4.3)

Let (R,+, ·) be a ring.

• a ∈ R is called invertible or unit if a is invertible in (R, ·).
• a ∈ R is called zero divisor if a 6= 0 and there exists some nonzero
b ∈ R s.t. a · b = 0 or b · a = 0.

(R,+, ·) is simply denoted by R if it is clear which operaions are used.

The units of a commutative ring R form a group. It is called the unit
group of R and is denoted by R∗.
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Fields

Definition (2.5.1)

A commutative ring is called a field if all of its nonzero elements are
invertible.

Example (2.5.2)

• The set of integers is not a field.

• The set of rational numbers is a field.

• The set of real numbers is a field.

• The set of complex numbers is a field.

• The residue class ring modulo a prime is a field.
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Division in the Residue Class Ring

Definition (2.6.1)

Let R be a ring and a, n ∈ R. a divides n if n = ab for ∃b ∈ R.

Theorem (2.6.2)

• The residue class a+mZ is invertible in Z/mZ iff gcd(a,m) = 1.

• If gcd(a,m) = 1, then the inverse of a+mZ is unique.

Theorem (2.6.4)

The residue class ring Z/mZ is a field iff m is prime.
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Analysis of the Operations in the Residue Class Ring

Theorem (2.7.1)

Suppose that the residue classes modulo m are represented by their least
non-negative representatives. Then, two residue classes modulo m can be

• added or subtracted using time and space O(size(m)),

• multiplied or divided using time O(size(m)2) and space O(size(m)).
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Multiplicative Group of Residues mod m

Theorem (2.8.1)

The set of all invertible residue classes modulo m is a finite abelian group
with respect to multiplication. It is called the multiplicative group of
residues modulo m and is denoted by (Z/mZ)∗.

Example (2.8.2, The multiplicative group of residues modulo 12)

(Z/12Z)∗ = {1 + 12Z, 5 + 12Z, 7 + 12Z, 11 + 12Z}.

Definition (The Euler ϕ-function)

ϕ : N→ N such that

ϕ(m) =
∣∣∣{a | a ∈ {1, 2, . . . ,m} ∧ gcd(a,m) = 1}

∣∣∣ .
The order of (Z/mZ)∗ is ϕ(m).
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Multiplicative Group of Residues mod m

Theorem (2.8.3)

p is prime⇒ ϕ(p) = p− 1.

Theorem (2.8.4)∑
d|m,d>0

ϕ(d) = m .

Proof. It is easy to see that
∑

d|m,d>0 ϕ(d) =
∑

d|m,d>0 ϕ(m/d).

ϕ(m/d) = |{a | a ∈ {1, 2, . . . ,m/d} ∧ gcd(a,m/d) = 1}|
= |{b | b ∈ {1, 2, . . . ,m} ∧ gcd(b,m) = d}| .

On the other hand,

{1, 2, . . . ,m} =
⋃

d|m,d>0

{b | b ∈ {1, 2, . . . ,m} ∧ gcd(b,m) = d} .
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Multiplicative Group of Residues mod m

Example (m = 12)∑
d | 12,d>0

ϕ(d) = ϕ(1) + ϕ(2) + ϕ(3) + ϕ(4) + ϕ(6) + ϕ(12) = 12 .

∑
d | 12,d>0

ϕ(12/d) = ϕ(12) + ϕ(6) + ϕ(4) + ϕ(3) + ϕ(2) + ϕ(1) .
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Multiplicative Group of Residues mod m

ϕ(1) = |{a | a ∈ {1} ∧ gcd(a, 1) = 1}|
= |{b | b ∈ {1, . . . , 12} ∧ gcd(b, 12) = 12}| = |{12}| .

ϕ(2) = |{a | a ∈ {1, 2} ∧ gcd(a, 2) = 1}|
= |{b | b ∈ {1, . . . , 12} ∧ gcd(b, 12) = 6}| = |{6}| .

ϕ(3) = |{a | a ∈ {1, 2, 3} ∧ gcd(a, 3) = 1}|
= |{b | b ∈ {1, . . . , 12} ∧ gcd(b, 12) = 4}| = |{4, 8}| .

ϕ(4) = |{a | a ∈ {1, 2, 3, 4} ∧ gcd(a, 4) = 1}|
= |{b | b ∈ {1, . . . , 12} ∧ gcd(b, 12) = 3}| = |{3, 9}| .

ϕ(6) = |{a | a ∈ {1, 2, 3, 4, 5, 6} ∧ gcd(a, 6) = 1}|
= |{b | b ∈ {1, . . . , 12} ∧ gcd(b, 12) = 2}| = |{2, 10}| .

ϕ(12) = |{a | a ∈ {1, . . . , 12} ∧ gcd(a, 12) = 1}|
= |{b | b ∈ {1, . . . , 12} ∧ gcd(a, 12) = 1}| = |{1, 5, 7, 11}| .
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Order of Group Elements

Let G be a group multiplicatively written with neutral element 1.

Definition (2.9.1)

Let g ∈ G. If there exists a positive integer e such that ge = 1, then the
smallest such integer is called the order of g. Otherwise, the order of g is
infinite.

The order of g in G is denoted by orderG(g).

Theorem (2.9.2)

Let g ∈ G and e ∈ Z. Then, ge = 1 iff orderG(g) | e.

Example (2.9.4, (Z/13Z)∗)
k 1 2 3 4 5 6 7 8 9 10 11 12

2k mod 13 2 4 8 3 6 12 11 9 5 10 7 1

4k mod 13
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Order of Group Elements

Theorem (2.9.5)

Suppose that orderG(g) = e and n is an integer. Then,

orderG(g
n) = e/ gcd(e, n) .

Proof. Let k = orderG(g
n). Since (gn)e/ gcd(e,n) = (ge)n/ gcd(e,n) = 1,

k | e/ gcd(e, n).
Since (gn)k = gnk = 1, e | nk. It implies e/ gcd(e, n) | k since
gcd(e/ gcd(e, n), n) = 1.
Thus, k = e/ gcd(e, n).
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Subgroups

Definition (2.10.1)

U ⊆ G is called a subgroup of G if U is a group with respect to the group
operation of G.

Example (2.10.2)

For ∀g ∈ G, the set 〈g〉 = {gk | k ∈ Z} is a subgroup of G. It is called the
subgroup generated by g.

Definition (2.10.4)

If G = 〈g〉 for ∃g ∈ G, then G is called cyclic and g is called a generator
of G.
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Subgroups

Theorem (2.10.6)

If G is finite and cyclic, then G has exactly ϕ(|G|) generators and they are
all of order |G|.

Definition

A map f : X → Y is called

• injective if f(x) = f(x′)⇒ x = x′ for ∀x, x′ ∈ X.

• surjective if for ∀y ∈ Y there exists x ∈ X s.t. f(x) = y.

• bijective if it is injective and surjective.

Theorem (2.10.9)

If G is a finite group, then the order of each subgroup of G divides the
order |G|.
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Subgroups

Definition (2.10.10)

Let H be a subgroup of G. Then, |G|/|H| is called the index of H in G.

S. Hirose (U. Fukui) Congruences and Residue Class Rings 21 / 44



Fermat’s Little Theorem

Theorem (2.11.1, Fermat’s Little Theorem)

Let a and m be pisitive integers. Then,

gcd(a,m) = 1⇒ aϕ(m) ≡ 1 (mod m) .

Theorem (2.11.2)

The order of every group element divides the group order.

Th. 2.11.2 follows from Th. 2.10.9.

Corollary (2.11.3)

g|G| = 1 for ∀g ∈ G.

Th. 2.11.1 follows from Cor. 2.11.3.
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Fast Exponentiation

The square-and-multiply method

Let (ek−1, ek−2, . . . , e1, e0) be the binary representation of e, where
ei ∈ {0, 1} and e0 is the least significant bit.

Example

e = e0 + 2e1 + 22e2 + 23e3 = e0 + 2(e1 + 2(e2 + 2e3))

1 12 = 1

2 ae3 1 = ae3

3 (ae3)2 = a2e3

4 ae2a2e3 = ae2+2e3

5 (ae2+2e3)2 = a2(e2+2e3)

6 ae1a2(e2+2e3) = ae1+2(e2+2e3)

7 (ae1+2(e2+2e3))2 = a2(e1+2(e2+2e3))

8 ae0a2(e1+2(e2+2e3)) = ae0+2(e1+2(e2+2e3)) = ae
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Fast Exponentiation

ae mod n is computed with at most 2|e| modular multiplications (more
precisely, |e|+HW(e))

Corollary (2.12.3)

If e is an integer and a ∈ {0, 1, . . . ,m− 1}, then ae mod m can be
computed with time O(size(e)size(m)2) and space O(size(e) + size(m)).
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Fast Evaluation of Power Products

Let bi,n−1, bi,n−2, . . . , bi,0 be the binary expansion of ei for 1 ≤ i ≤ k.

k∏
i=1

geii =

k∏
i=1

g
bi,n−12

n−1+bi,n−22
n−2+···+bi,02

0

i

=

k∏
i=1

g
bi,n−12

n−1

i g
bi,n−22

n−2

i · · · gbi,02
0

i

=

(
k∏

i=1

g
bi,n−12

n−1

i

)(
k∏

i=1

g
bi,n−22

n−2

i

)
· · ·

(
k∏

i=1

g
bi,02

0

i

)

=

(
k∏

i=1

g
bi,n−1

i

)2n−1 (
k∏

i=1

g
bi,n−2

i

)2n−2

· · ·

(
k∏

i=1

g
bi,0
i

)

Let
k∏

i=1

g
bi,j
i = Gj for 0 ≤ j ≤ n. Then,
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Fast Evaluation of Power Products

k∏
i=1

geii = (Gn−1)
2n−1

(Gn−2)
2n−2

· · · (G0)
20

= ((· · · ((Gn−1)
2Gn−2)

2 · · · )G1)
2G0

Precomputation

k∏
i=1

g
bj
i for all (b1, b2, . . . , bk) ∈ {0, 1}k
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Computation of Element Orders

How to compute the order of g ∈ G when the prime factorization of |G| is
known.

Theorem (2.14.1)

Let |G| =
∏

p||G| p
e(p). Let f(p) be the greatest integer s.t. g|G|/p

f(p)
= 1.

Then,
order(g) =

∏
p||G|

pe(p)−f(p) .

Proof. Let |G| = pe11 p
e2
2 · · · p

ek
k . Let order(g) = n. Let f(pi) = fi. Since

n | |G|,
n = p

e′1
1 p

e′2
2 · · · p

e′k
k

for e′i ≤ ei. Since n | |G|/pfii , e′i ≤ ei − fi. If e′j � ej − fj for some j,

then, for f ′j = ej − e′j 
 fj , g|G|/p
f ′j
j = 1. It contradicts the assumption

that fj is the greatest integer s.t. g|G|/p
fj
j = 1. Thus, e′j = ej − fj .
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Computation of Element Orders

Corollary (2.14.3)

Let n ∈ N. If gn = 1 and gn/p 6= 1 for every prime divisor p of n, then
order(g) = n.
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The Chinese Remainder Theorem (1/3)

Theorem (2.15.2)

Let m1,m2, . . . ,mn be pairwise co-prime positive integers. Then, for
integers a1, a2, . . . , an, 

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)
· · ·

x ≡ an (mod mn)

has a unique solution in {0, 1, . . . ,m− 1}, where m =
∏n

i=1mi.
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The Chinese Remainder Theorem (2/3)

The solution is

x =

(
n∑

i=1

ai yiMi

)
mod m,

where, for 1 ≤ i ≤ n,

Mi = m/mi,

yi =Mi
−1 mod ni.
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The Chinese Remainder Theorem (3/3)

Example 
x ≡ 2 (mod 7)
x ≡ 6 (mod 8)
x ≡ 7 (mod 11)

m = 7× 8× 11 = 616

M1 = 88

M2 = 77

M3 = 56

y1 = 88−1 mod 7 = 4−1 mod 7 = 2

y2 = 77−1 mod 8 = 5−1 mod 8 = 5

y3 = 56−1 mod 11 = 1−1 mod 11 = 1

x = 2× 88× 2 + 6× 77× 5 + 7× 56× 1 mod 616 = 590
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Decomposition of the Residue Class Ring

Definition (2.16.1)

Let R1, R2, . . . , Rn be rings. Their direct product
∏n

i=1Ri is the set of all
(r1, r2, . . . , rn) ∈ R1 ×R2 × · · · ×Rn with component-wise addition and
multiplication.

•
∏n

i=1Ri is a ring.

• If Ri’s are commutative rings with unit elements ei’s, then
∏n

i=1Ri is
a commutative ring with unit element (e1, . . . , en).

Definition (2.16.3)

Let (X, ◦1, . . . , ◦n) and (Y, �1, . . . , �n) be sets with n operarions.
f : X → Y is called a homomorphism if f(a ◦i b) = f(a) �i f(b) for every
a, b ∈ X and 1 ≤ i ≤ n. If f is bijective, then it is called an isomorphism.
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Decomposition of the Residue Class Ring

Example (2.16.4)

• If m is a positive integer, then the map Z→ Z/mZ s.t. a 7→ a+mZ
is a ring homomorphism.

• If G is a cyclic group of order n with generator g, then the map
Z/nZ→ G s.t. e+ nZ 7→ ge is an isomorphism of groups.

Theorem (2.16.5)

Let m1,m2, . . . ,mn be pairwise coprime integers and let m =
∏n

i=1mi.
Then, the map

Z/mZ→
n∏

i=1

Z/miZ s.t. a+mZ 7→ (a+m1Z, . . . , a+mnZ)

is an isomorphism of rings.
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A Formula for the Euler ϕ-Function (1/2)

Theorem (2.17.1)

Let m1, . . . ,mn be pairwise co-prime integers and m =
∏n

i=1mi Then,
ϕ(m) =

∏n
i=1 ϕ(mi).

Proof. Th. 2.16.5 implies

(Z/mZ)∗ →
n∏

i=1

(Z/miZ)∗ s.t. a+mZ 7→ (a+m1Z, . . . , a+mnZ)

is an isomorphism of groups. Actually, for x+mZ ∈ Z/mZ,
gcd(x,m) 6= 1 iff gcd(x,mi) 6= 1 for some i. Thus,

x+mZ 6∈ (Z/mZ)∗ ⇔ x+miZ 6∈ (Z/miZ)∗ for ∃i .

Therefore, ϕ(m) = |(Z/mZ)∗| =
∏n

i=1 |(Z/miZ)∗| =
∏n

i=1 ϕ(mi).
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A Formula for the Euler ϕ-Function (2/2)

Theorem (2.17.2)

Let m > 0 be an integer and
∏

p |m p
e(p) be the prime factorization of m.

Then,

ϕ(m) =
∏
p |m

(p− 1)pe(p)−1 = m
∏
p |m

p− 1

p
.

Proof. From Th. 2.17.1,

ϕ(m) =
∏
p |m

ϕ(pe(p)) .

Thus, the theorem follows from

ϕ(pe(p)) = |{1, 2, . . . , pe(p) − 1}| − (# of p’s multiples)

= pe(p) − 1− (pe(p) − p)/p
= (p− 1)pe(p)−1 .
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Polynomials

R commutative ring with unit element 1 6= 0

polynomial in one variable over R

f(X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0

coefficients a0, . . . , an ∈ R

R[X] the set of all polynomials in the variable X

n degree of the polynomial f if an 6= 0

monomial anX
n

If f(r) = 0, then r is called zero of f .

sum of polynomials

product of polynomials
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Polynomials over Fields (1/2)

Let K be a field.

Lemma (2.19.1)

The ring K[X] has no zero divisors.

Lemma (2.19.2)

f, g ∈ K[X] ∧ f, g 6= 0⇒ deg(fg) = deg(f) + deg(g)

Theorem (2.19.3)

Let f, g ∈ K[X] and g 6= 0. Then, there exists unique q, r ∈ K[X] s.t.
f = qg + r and r = 0 or deg(r) < deg(g).

Example (2.19.4)

Let K = Z/2Z.

x3 + x+ 1 = (x2 + x)(x+ 1) + 1
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Polynomials over Fields (2/2)

Corollary (2.19.6)

Let f ∈ K[x] and f 6= 0. If f(a) = 0, then f(x) = (x− a)q(x) for some
q ∈ K[x].

Corollary (2.19.8)

f ∈ K[x] ∧ f 6= 0⇒ f has at most deg(f) zeros

Proof. Let n = deg(f). If n = 0, then f 6= 0 has no zero. Let n ≥ 1. If
f(a) = 0, then f(x) = (x− a)q(x) and deg(q) = n− 1. By the induction
hypothesis, q has at most n− 1 zeros. Thus, f has at most n zeros.

Example (2.19.9)

• x2 + x ∈ (Z/2Z)[x] has zeros 0 and 1 in Z/2Z.

• x2 + 1 ∈ (Z/2Z)[x] has a zero 1 in Z/2Z.

• x2 + x+ 1 ∈ (Z/2Z)[x] has no zero in Z/2Z.
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Construction of Finite Fields (1/2)

GF(pn) for any prime p and any integer n ≥ 1

• GF stands for Galois field

• p is called the characteristic of GF(pn)

• GF(p) is called a prime field

f irreducible polynomial of degree n in (Z/pZ)[X]

The elements of GF(pn) are residue classes mod f .

residue class of g ∈ (Z/pZ)[X] mod f

g + f(Z/pZ)[X] = {g + fh |h ∈ (Z/pZ)[X]}
= {v | v ∈ (Z/pZ)[X] and v ≡ g (mod f)}

The number of different residue classes mod f is pn
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Construction of Finite Fields (2/2)

Example (2.20.2)

Residue classes in (Z/2Z)[X] mod f(X) = X2 +X + 1 are

• 0 + f(Z/2Z)[X]

• 1 + f(Z/2Z)[X]

• X + f(Z/2Z)[X]

• X + 1 + f(Z/2Z)[X]

They are simply denoted by 0, 1, X, X + 1, respectively.

It can be shown that the fields with two distinct irreducible polynomials in
(Z/pZ)[X] of degree n are isomorphic.
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The Structure of the Unit Group of Finite Fields (1/2)

Theorem (2.21.1)

Let K be a finite field with q elements. Then, for ∀d s.t. d | q − 1, there
are exactly ϕ(d) elements of order d in the unit group K∗.

Proof. Let ψ(d) be the number of elements of order d in K∗. All the
elements of order d are zeros of xd − 1.
Let a ∈ K∗ be an element of order d. Then, the zeros of xd − 1 are ae

(e = 0, 1, . . . , d− 1). ae is of order d iff gcd(e, d) = 1 (Cor. 2.19.8). Thus,
ψ(d) > 0⇒ ψ(d) = ϕ(d).
If ψ(d) = 0 for ∃d s.t. d | q − 1. Then,

q − 1 =
∑

d | q−1

ψ(d) <
∑

d | q−1

ϕ(d)

which contradicts Th. 2.8.4.
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The Structure of the Unit Group of Finite Fields (2/2)

Corollary (2.21.3)

Let K be a finite field with q elements. Then, the unit group K∗ is cyclic
of order q − 1. It has exactly ϕ(q − 1) generators.
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Structure of the Multiplicative Group of Residues Modulo a
Prime Number

Corollary

For any prime p, the multiplicative group of residues mod p is cyclic of
order p− 1.

If the residue class a+ pZ generates the multiplicative group of residues
(Z/pZ)∗, then a is called a primitive root mod p.
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Structure of the Multiplicative Group of Residues Modulo a
Prime Number

Example

For (Z/11Z)∗, the number of the primitive elements is ϕ(10) = 4.

1 2 3 4 5 6 7 8 9 10 ord.

1 1 1 1 1 1 1 1 1 1 1 1

2 2 4 8 5 10 9 7 3 6 1 10

3 3 9 5 4 1 3 9 5 4 1 5

4 4 5 9 3 1 4 5 9 3 1 5

5 5 3 4 9 1 5 3 4 9 1 5

6 6 3 7 9 10 5 8 4 2 1 10

7 7 5 2 3 10 4 6 9 8 1 10

8 8 9 6 4 10 3 2 5 7 1 10

9 9 4 3 5 1 9 4 3 5 1 5

10 10 1 10 1 10 1 10 1 10 1 2

S. Hirose (U. Fukui) Congruences and Residue Class Rings 44 / 44


